Vis enkel innførsel

dc.contributor.authorTranseth, Aksel Andreas
dc.contributor.authorSchjølberg, Ingrid
dc.contributor.authorLekkas, Anastasios
dc.contributor.authorRisholm, Petter
dc.contributor.authorMohammed, Ahmed Kedir
dc.contributor.authorSkaldebø, Martin Breivik
dc.contributor.authorHaugaløkken, Bent Oddvar Arnesen
dc.contributor.authorBjerkeng, Magnus Christian
dc.contributor.authorTsiourva, Maria Efstathia
dc.contributor.authorPy, Frédéric
dc.date.accessioned2023-06-19T09:01:51Z
dc.date.available2023-06-19T09:01:51Z
dc.date.created2022-12-22T10:39:49Z
dc.date.issued2022
dc.identifier.citationIFAC-PapersOnLine. 2022, 55 (31), 387-394.en_US
dc.identifier.issn2405-8963
dc.identifier.urihttps://hdl.handle.net/11250/3072008
dc.description.abstractThis paper presents the main results and latest developments in a 4-year project called autonomous subsea intervention (SEAVENTION). In the project we have developed new methods for autonomous inspection, maintenance and repair (IMR) in subsea oil and gas operations with Unmanned Underwater Vehicles (UUVs). The results are also relevant for offshore wind, aquaculture and other industries. We discuss the trends and status for UUV-based IMR in the oil and gas industry and provide an overview of the state of the art in intervention with UUVs. We also present a 3-level taxonomy for UUV autonomy: mission-level, task-level and vehicle-level. To achieve robust 6D underwater pose estimation of objects for UUV intervention, we have developed marker-less approaches with input from 2D and 3D cameras, as well as marker-based approaches with associated uncertainty. We have carried out experiments with varying turbidity to evaluate full 6D pose estimates in challenging conditions. We have also devised a sensor autocalibration method for UUV localization. For intervention, we have developed methods for autonomous underwater grasping and a novel vision-based distance estimator. For high-level task planning, we have evaluated two frameworks for automated planning and acting (AI planning). We have implemented AI planning for subsea inspection scenarios which have been analyzed and formulated in collaboration with the industry partners. One of the frameworks, called T-REX demonstrates a reactive behavior to the dynamic and potentially uncertain nature of subsea operations. We have also presented an architecture for comparing and choosing between mission plans when new mission goals are introduced.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectMarine vesselsen_US
dc.subjectMarine operationsen_US
dc.subjectAutonomyen_US
dc.subjectAutonomous subsea interventionen_US
dc.titleAutonomous subsea intervention (SEAVENTION)en_US
dc.title.alternativeAutonomous subsea intervention (SEAVENTION)en_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright © 2022 The Authors. This is an open access article under the CC BY-NC-ND license.en_US
dc.source.pagenumber387-394en_US
dc.source.volume55en_US
dc.source.journalIFAC-PapersOnLineen_US
dc.source.issue31en_US
dc.identifier.doi10.1016/j.ifacol.2022.10.459
dc.identifier.cristin2096839
dc.relation.projectNorges forskningsråd: 280934en_US
dc.relation.projectNorges forskningsråd: 322744en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal