Vis enkel innførsel

dc.contributor.authorPasdeloup, David Francis Pierre
dc.contributor.authorOlaisen, Sindre Hellum
dc.contributor.authorØstvik, Andreas
dc.contributor.authorSæbø, Sigbjørn
dc.contributor.authorPettersen, Håkon Neergaard
dc.contributor.authorHolte, Espen
dc.contributor.authorGrenne, Bjørnar
dc.contributor.authorStølen, Stian Bergseng
dc.contributor.authorSmistad, Erik
dc.contributor.authorAase, Svein Arne
dc.contributor.authorDalen, Håvard
dc.contributor.authorLøvstakken, Lasse
dc.date.accessioned2023-04-21T12:02:31Z
dc.date.available2023-04-21T12:02:31Z
dc.date.created2022-11-09T17:08:59Z
dc.date.issued2022
dc.identifier.citationUltrasound in Medicine and Biology. 2023, 49 (1), 333-346.en_US
dc.identifier.issn0301-5629
dc.identifier.urihttps://hdl.handle.net/11250/3064267
dc.description.abstractMeasurements of cardiac function such as left ventricular ejection fraction and myocardial strain are typically based on 2-D ultrasound imaging. The reliability of these measurements depends on the correct pose of the transducer such that the 2-D imaging plane properly aligns with the heart for standard measurement views and is thus dependent on the operator's skills. We propose a deep learning tool that suggests transducer movements to help users navigate toward the required standard views while scanning. The tool can simplify echocardiography for less experienced users and improve image standardization for more experienced users. Training data were generated by slicing 3-D ultrasound volumes, which permits simulation of the movements of a 2-D transducer. Neural networks were further trained to calculate the transducer position in a regression fashion. The method was validated and tested on 2-D images from several data sets representative of a prospective clinical setting. The method proposed the adequate transducer movement 75% of the time when averaging over all degrees of freedom and 95% of the time when considering transducer rotation solely. Real-time application examples illustrate the direct relation between the transducer movements, the ultrasound image and the provided feedback.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleReal-Time Echocardiography Guidance for Optimized Apical Standard Viewsen_US
dc.title.alternativeReal-Time Echocardiography Guidance for Optimized Apical Standard Viewsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s)en_US
dc.source.pagenumber333-346en_US
dc.source.volume49en_US
dc.source.journalUltrasound in Medicine and Biologyen_US
dc.source.issue1en_US
dc.identifier.doi10.1016/j.ultrasmedbio.2022.09.006
dc.identifier.cristin2071428
dc.relation.projectNorges forskningsråd: 237887en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal