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Abstract—Measurements of cardiac function such as left ventricular ejection fraction and myocardial strain are
typically based on 2-D ultrasound imaging. The reliability of these measurements depends on the correct pose of
the transducer such that the 2-D imaging plane properly aligns with the heart for standard measurement views
and is thus dependent on the operator’s skills. We propose a deep learning tool that suggests transducer move-
ments to help users navigate toward the required standard views while scanning. The tool can simplify echocardi-
ography for less experienced users and improve image standardization for more experienced users. Training data
were generated by slicing 3-D ultrasound volumes, which permits simulation of the movements of a 2-D trans-
ducer. Neural networks were further trained to calculate the transducer position in a regression fashion. The
method was validated and tested on 2-D images from several data sets representative of a prospective clinical set-
ting. The method proposed the adequate transducer movement 75% of the time when averaging over all degrees
of freedom and 95% of the time when considering transducer rotation solely. Real-time application examples
illustrate the direct relation between the transducer movements, the ultrasound image and the provided feed-
back. (E-mail: david.pasdeloup@ntnu.no) © 2022 The Author(s). Published by Elsevier Inc. on behalf of World
Federation for Ultrasound in Medicine & Biology. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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INTRODUCTION

Echocardiography is the cornerstone image modality for

measuring and evaluating cardiac function, today based

primarily on 2-D image acquisition following a defined

protocol of standard views and measurements used for

subsequent diagnostics (Lang et al. 2015). The acquisi-

tion of these standard views is challenging for inexperi-

enced users, and is prone to substantial variation even

among experienced users. This limits the availability of

echocardiography for the patients and also decreases

measurement reproducibility (Morbach et al. 2018).

The acquisition of the three apical standard views—

apical four-chamber (A4C), two-chamber (A2C) and
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long-axis (ALAX)—can be broken down into three

steps, as illustrated in Figure 1. First, the users need to

find the correct intercostal acoustic window where the

anatomical apex of the heart is closest to the transducer.

In the second step, users need to rotate and tilt the trans-

ducer around the left ventricular centerline (between the

apex and the center of the mitral valve) to produce the

three standard apical imaging planes with minimal fore-

shortening. The last step consists of optimizing the

images for both anatomical correctness and image qual-

ity to establish a more detailed cardiac examination. We

here define anatomical correctness (AC) to depend only

on the location of the 2-D imaging plane. AC is not

related to the quality of the ultrasound (US) signal.

The starting point of our work is that the standard

apical views acquired by both inexperienced and experi-

enced users have an operator variability in AC, influenc-

ing the measurements that follow. Two examples of
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Fig. 1. Procedure steps and experience required for acquisition of the apical standard views.
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standard views of different quality are provided in

Figure 2. These are recordings from the echo lab and

thus represent clinical practice, where anatomical land-

marks reveal differences in AC.

Three-dimensional US imaging can be part of a

future solution, as volume measurements can be more

directly extracted, and standard planes automatically

extracted (Chykeyuk et al. 2014; Domingos et al. 2014).

However, 3-D and multi-plane imaging still suffers from

limitations such as a lower frame rate and suboptimal

image quality compared with 2-D imaging, and optimi-

zation of each view is often needed to obtain good image

quality. Further, 3-D US is not readily available for

hand-held systems. We thus believe that 2-D echocardi-

ography will remain important for the foreseeable future.

Some research and development have previously been

done to facilitate the echocardiography procedure described

in Figure 1. In step 1, finding a suitable intercostal space

can be seen as minimizing apical foreshortening, which

was previously approached using image segmentation
Fig. 2. Example of the inter-operator variability in the imaging
plane of clinical recordings. For a given target view on the
same patient, the recording on the left acquired is a sub-optimal
standard view, whereas the recording on the right (acquired by
another operator) complies with the guidelines recommenda-
tions. Full cine loops are available in Video S3 (online only).

A2C = apical two-chamber; ALAX = apical long-axis.
(Smistad et al. 2020). Finding the imaging plane in step 2

has been addressed before by both classic and deep learn-

ing (DL)�based approaches (Snare et al. 2012;

Østvik et al. 2019). However, these methods were only

able to grade the AC, and did not give user feedback on the

required transducer movements to acquire the standard

views. In Østvik et al. (2019), we proposed an exploratory

extension of the view classification method with 3-D data

for training to enable feedback to the user on rotational

movement of the transducer. However, the solution was

preliminary, limited to the rotational movement, and strug-

gled to generalize sufficiently for real-time 2-D imaging.

To our best knowledge, Toporek et al. (2019) is the only

technical description of a DL-based echocardiography

guidance system with training data generated with a 2-D

transducer and an external positional sensor. Their

approach is, however, limited by a low number of patients

used in the training data set, an accuracy not quantified for

the A2C and ALAX views and a lack of prospective test-

ing. Navigation using an inertial measurement unit could

be used to provide feedback and thus guide the user. A

solution would, however, still be needed to recognize the

target view and the direction to it. Li et al. (2018) used a

neural network to calculate the required geometric transfor-

mation to obtain a standard plane within a 3-D fetal US vol-

ume, and Droste et al. (2020) proposed a neural network

that predicts an angle-to-target value given a 2-D fetal

image. However, echocardiography introduces additional

challenges such as the ribs limiting the acoustic window or

anatomical variability. It is therefore not straightforward to

apply methods from fetal US to heart US.

Machine learning echocardiography assistance is also

a topic of interest for several companies that have devel-

oped proprietary solutions. Narang et al. (2021) (Caption

Health Inc., Brisbane, CA, USA) reported that their algo-

rithm can help nurses to acquire recordings of diagnostic

quality, but did not report results on the correctness of each

individual standard view. The same algorithm was tested

on medical students by Schneider et al. (2021), who

reported the algorithm was helpful in acquiring the A4C

and A2C views. However, these two studies lacked a con-

trol group of users who scan without the algorithm assis-

tance. The technical challenge of echocardiography

guidance is therefore not solved in its entirety.

In this work, we propose a real-time guidance method

for 2-D echocardiography that estimates the transducer

rotation and tilt in relation to the cardiac anatomy based
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only on the 2-D image input. The method provides feed-

back on how to adjust the transducer position to reach the

target standard apical views. This tool can be valuable (i)

to improve image view consistency and help limit subse-

quent measurement variability for experienced users in the

echo lab, and (ii) to unleash the potential of echocardiogra-

phy for non-expert users using hand-held devices, thus

unlocking a potential tool for detecting heart disease prior

to hospital referral. Finally, the tool can (iii) be used to train

novice users in echocardiography.
Main contributions

We have developed and evaluated a software-based

echocardiography guidance system based on positional

regression directly from 2-D images. The main contribu-

tions of the study described here with respect to previous

work from Østvik et al. (2019) are as follows:

� An improved protocol for defining echocardiographic

anatomical views, including non-standard apical

views used for image guiding
� A semi-automated approach for extracting 2-D train-

ing data from 3-D US recordings with an accurate ref-

erence position
� An more robust neural network for estimating the

transducer rotational position
� New neural networks for estimating the transducer tilt

position
� Extensive validation and testing on several represen-

tative 2-D data sets from the clinic
� A real-time prototype application that shows evidence

of the method validity
METHODS

Our main approach was to use deep convolutional

neural networks to predict the transducer position rela-

tive to the heart in the form of a regression task based on
Fig. 3. The angle between A4C�A2C and A4C�ALAX standa
A2C = apical two-chamber; A4C = apical fo
the 2-D US image input, in which training data were gen-

erated from 3-D US volumes, as detailed in the following

sections.
Degrees of freedom and problem formulation

Two-dimensional echocardiography involves

multiple degrees of freedom (DOFs), with two transla-

tion DOFs in the skin plane and three rotation DOFs

(transducer rotation, in-plane tilt, out-of-plane tilt).

Additional challenges can be attributed to the motion

of the heart, patient breathing and the restricted acous-

tic window between the ribs, limiting the possibility of

obtaining good image quality and aligned cardiac

views.

To reduce the complexity of the problem, we initially

assumed that the heart apex is located at a shallow depth

and regarded it as an anchor, meaning that the correct inter-

costal space is used and that no significant translations at

the skin surface are required. Considering that the out-of-

plane transducer rotations are difficult for users who lack

spatial representation of the heart, we address in this work

the rotation and out-of-plane tilt DOFs (referred to further

as rotation and tilt DOFs) and leave the in-plane tilt DOFs

to separate work.

We considered rotation and tilt separately and

trained four individual models, one for the transducer

rotation and three for the transducer tilt in the different

apical views. The approach of using multiple models

mimics the work flow of sonographers who iteratively

adjust the transducer tilt and rotation. It is also conve-

nient to isolate method failures and improves explain-

ability.

A particular challenge for position regression is the

intrinsic variation of the heart’s shape. This is exempli-

fied in Figure 3, which illustrates the patient variability

in the amount of rotation from the A4C to the A2C and

ALAX views. Because of this variation, we did not

design a neural network that outputs an angle-to-target
rd views obtained from the manually annotated 3-D data.
ur-chamber; ALAX = apical long-axis.
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value as in Droste et al. (2020), but rather a position rela-

tive to the characteristic heart structures defined below.
Training data generation

The 2-D training images were generated from 3-D

US recordings according to the procedure illustrated in

Figure 4. Starting from a 3-D US recording, we automat-

ically extracted the apex and base landmarks and the

maximum left ventricle (LV) radius (steps 1 and 2).

The landmark and radius estimates were obtained from

the segmentation mask of our 3-D UNet (Smistad et al.

2021), and were quality controlled and corrected by a

clinical expert if needed.

Once the LV axis (going through apex and base

landmarks) was defined, 360 slices were automatically

generated (step 3) at end-diastole (ED) for each patient

to simulate a transducer rotation movement around the

heart’s long axis. A clinical expert annotated 6 of the

360 slices as characteristic cross-sections (CCSs)

(step 4). Three were the apical standard views

(Fig. 5b), while three were non-standard (Fig. 5c),

inserting additional clinical knowledge in the rotation

position regression. The characteristic features of the

additional views are termed (i) the A42C view

(between A4C and A2C), which reveals the presence

of a thin right ventricle (RV) but no tricuspid valve is
Fig. 4. Training data generation pipeline. Step 1: Takes a 3-D
LV. Step 2: Generates, from the mask, the apex and base land
axis. The maximum LV radius is also extracted. The axis and
Step 3: Automatically generates 360 slices of the volume arou
annotated six slices as CCSs. Step 5: Automatically generates th
position (either A4C, A2C or ALAX) and the LV axis and radiu
ED frame, whereas the training slices were generated from mu
two-chamber; A4C = apical four-chamber; ALAX = apical long

tole LV = left ventricle;
visible, or a thickened inferoseptal wall; (ii) the Annu-

lus Start (ANS) view; and (iii) annulus end (ANE)

view. These three are recognizable by the left ventric-

ular outflow tract (LVOT) being slightly visible, while

the aorta valve leaflets are not visible. ANS further

typically has a thick anterior wall, whereas in the ANE

view the RV is visible.

For the tilt DOF, the corresponding CCSs were

extracted automatically at the rotational position of the

standard views (either A4C, A2C or ALAX). With

knowledge of the LV axis length lLV and LV radius rLV,

as illustrated in Figure 6a, the tilt span Sw can be

expressed as

Sw ¼ 2 ¢ tan�1 a ¢ rLV
lLV

: ð1Þ

a is a coefficient chosen larger than 1 so that the sli-

ces at the outer edges of the span include neither the

mitral valve (MV) nor the left atrium (LA). The tilt slices

were evenly distributed over the tilt span, which should

correspond to anatomical features derived from any LV

size rather than an absolute tilt angle, thus accounting

for patient variability.

Once annotation at ED is done, the training slices

are generated from several frames assuming the LV axis

and CCSs annotated at ED are stable throughout a single

cardiac cycle.
US volume at ED as input and outputs a 3-D mask of the
marks, which together form the LV geometric rotational
the radius were manually corrected by a clinical expert.
nd the defined rotational axis. Step 4: A clinical expert
e slices to train the tilt models based on the ED rotational
s. The annotations (LV axis and CCSs) were made at the
ltiple frames throughout the cardiac cycle. A2C = apical
-axis; CCS = characteristic cross-section; ED = end-dias-
US = ultrasound.



Fig. 5. (a) Positions of the six rotational CSSs in the parasternal short-axis plane. (b) The three CSSs corresponding to
the apical standard views and (c) those for non-standard views. Characteristic features of the A42C view is the presence
of a thin RV without visible tricuspid valve or a thick inferior septal wall. ANS and ANE are recognized by LVOT being
slightly visible, but the aorta valve leaflets not visible. ANS typically has a thick anterior wall, whereas ANE has the RV
visible. A2C = apical two-chamber; A4C = apical four-chamber; A42C = view between A4C and A2C views;
ALAX = apical long-axis; ANE = annulus end; ANS = annulus start; CCS = characteristic cross-section; LA = left
atrium; LV = left ventricle; LVOT = left ventricular outflow tract; RA = right atrium; RV = right ventricle; Ao = aorta.
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Image position regression with deep learning

Considering the continuity along the slices for each

DOF, the position can be posed as a regression problem

and thus addressed with DL-based architectures. Conti-

nuity was included in the training procedure using

the Earth mover’s distance as the loss function

(Hou et al. 2016), which measures the distance between

the true and predicted positions and penalizes predictions

with larger distance error. To account for patient vari-

ability, the predicted position p̂ is given relative to the

labeled CCSs and, thus, to the characteristic heart struc-

tures in Figures 5 and 6.
Separate rotation and tilt networks were trained. The

rotation network has 12 output categories, corresponding

to the 6 rotational CCSs and their flipped counterparts. As

the different CCSs are not evenly spaced along the rota-

tional DOF as illustrated in Figure 3, the number of rota-

tional slices is sampled to balance the categories.

The tilt network has 11 output categories sampled

equidistantly by the automated tilt annotation proce-

dure described in Figure 4. As there are more slices

than labeled CCSs for both rotational and tilt DOFs,

the slices inbetween are assigned non-binary labels

obtained through linear interpolation of the two



Fig. 6. (a) Description of cross-sections for the A4C tilting. (b) A4C tilt samples. (c) A2C tilt samples. (d) ALAX tilt
samples. A2C = apical two-chamber; A4C = apical four-chamber; ALAX = apical long-axis; LA = left atrium; LV = left

ventricle; RA = right atrium; RV = right ventricle; Ao = aorta.
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closest CCSs so that the models learn the continuous

nature of the task.

The predicted relative position p̂ for any input

frame X is obtained by the dot product of the network

output vector C and class index vector as
p̂ Xð Þ ¼
XN�1

n¼0

CX nð Þ ¢ n: ð2Þ

We can then define the categorical distance d of any

frame X to the target CCS as



d X ;CCSð Þ ¼ p̂ Xð Þ � p CCSð Þ; ð3Þ
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where pðCCSÞ is the index of the target cross-sectional

view.

We used our CVCNet topology (Østvik et al. 2019)

which is optimized for US image classification and real-

time performance. Other model architectures are bench-

marked in the supplementary material.

In the real-time application, the target CCS corre-

sponds to the three standard views A4C, A2C and

ALAX. The sign of d then indicates the direction of the

required transducer movement along the corresponding

DOF, and low values of d indicate a correct view.
Data augmentation and pre-processing

Rotation, translation, scaling and gamma intensity

transformation augmentations form our baseline set of

augmentations used in all experiments. Additionally, we

used several US specific augmentations, termed US

augmentations:

� Gaussian shadows to mimic signal dropouts or acous-

tic wave propagation artifacts
� Depth attenuation to add varying depth-dependent

dampening of the acoustic waves
� Haze artifacts to mimic acoustic haze typically origi-

nating from reverberations
� Non-linear color maps to make the models robust to

different color transformations
� Contrast scaling and brightness transform to increase

robustness to gain and dynamic range
� Field-of-view (FOV) masking to make the models

disregard the FOV shape and avoid unintended effects

related to the sector width and depth settings

Specifically for our image guiding task, we finally

introduced and evaluated two pre-processing techniques

related to the use of 3-D volumes as the training data

source:

� Spatial reference noise: In the data generation pro-

cess, we established a reference LV axis position

(Fig. 4, step 2). To increase the robustness of the net-

works to minor errors in transducer tilt and transla-

tion, we introduced stochastic deviations to the actual

LV axis and rotational position before generating the

slices. The amount of deviation remains small com-

pared with the LV dimensions so that the annotations

can still be considered valid.
� Gaussian blurring: This pre-processing step aims to

improve generalization from 3-D slices to 2-D US

images at inference. Blurring is implemented as a

Gaussian filter with standard deviation two orders of

magnitude lower than the image size. The goal is to
make images more similar by smoothing details such

as speckle while preserving the heart structures. Blur-

ring is applied upstream of the convolutional layers

for both training and inference.

Data sets

We used data sets of 2-D and 3-D recordings to

train, validate and test our models. Regional ethics board

approval and written consent were obtained for all stud-

ies and patients involved.

Training and internal validation. Three-dimen-

sional recordings were used for training the models and

were also used as part of the validation procedure. The

FOV of 3-D recordings is often reduced to achieve

higher frame rates in clinical practice. Therefore, slices

from such volumes are not necessarily representative of

what is acquired with 2-D echocardiography. Conse-

quently, we included only 3-D volumes that cover the

whole LV and its surrounding structures (RV and LA).

This ensures that we have sufficient context to generate

slices with structures similar to those visible in 2-D

echocardiography which are the data used during infer-

ence. The 3-D recordings acquired using ECG gating

with visible stitching artifacts were excluded.

We included 3-D US recordings from three differ-

ent data sets, in total N = 162 patients:

� CETUS: An open data set of n = 45 patients

(Bernard et al. 2014), both pathological and healthy.

The recordings were acquired with scanners from

three different vendors.
� NTNU 3-D A: Recordings from n = 36 patients

acquired at St. Olav’s Hospital, Trondheim, Norway,

using a GE E95 scanner and 4Vc transducer (GE

Vingmed Ultrasound, Horten, Norway). The popula-

tion is representative of the daily routine at the echo

lab, with both healthy and diseased patients.
� NTNU 3-D B: n = 81 recordings acquired with a GE

E95 scanner at institutions spread over six different

countries.

The 3-D recordings from 20% of the patients were

set aside for internal validation and are not used for train-

ing. Slices from 3-D US volumes have generally lower

image quality, especially in the near field. To ensure that

the trained models do not overfit the training data, we

also validated the method on an external data set made

of 2-D US images representative of clinical use as

described in the following.

External 2-D validation data set. To validate our

method against 2-D images, we specifically acquired the

NTNU 2-D Guiding data set, composed of n = 47
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patients where each include 15 recordings. For each stan-

dard view, the following were acquired by a clinical

expert:

� The standard view
� Two views with negative and positive rotation angles

compared with the standard one
� Two views with negative and positive tilt angles com-

pared with the standard one

The non-standard recordings have a position error

relative to the standard recording that is qualitatively

known, allowing evaluation of the ordering metrics

given by eqns (4) and (5) given later.
External test data sets. We tested our method on

two larger retrospective data sets composed of standard

view recordings, without information on the AC: the

CAMUS data set (500 patients) (Leclerc et al. 2019),

which features A4C and A2C views, and the NTNU-

LVD (left ventricular disease) data set (168 patients)

(Grue et al. 2018), which features in addition the ALAX

view. Both data sets are representative of daily clinical

practice in terms of image quality and pathological

cases.

Finally, we tested our method on a repeatability

study data set of 88 patients who underwent three conse-

cutive exams containing each of the three apical views,

carried out by a panel of three sonographers and three

cardiologists. We call this data set NTNU 2-D Repeat-

ability.
Experimental setup

Training and validation. Our method gives feed-

back to help users adjust the transducer position toward

a more optimized view. At the end of each training

epoch, we ran two validation procedures:

1. For the first procedure the metric of interest is the val-

idation loss, calculated on the internal validation sub-

set of the annotated slices from 3-D. This validation

loss is calculated similarly to the training loss. Neither

spatial reference noise nor US augmentations are

applied when calculating this validation loss.

2. For the second procedure we introduce the ordering

success rate (OSR). This metric is more appropriate

for evaluating our models from the user perspective

of 2-D image guiding. The procedure uses views from

the NTNU 2-D Guiding external validation data set.

For each combination of patient, standard view, rota-

tion or tilt, we use a set of three recordings corre-

sponding to three different orientations:
� Recording A: Anatomically correct standard view
� Recording B: Slight positive transducer angulation

along the DOF from recording A
� Recording C: Slight negative transducer angulation

along the DOF from recording A

The true ordering is then expressed as

p Cð Þ< p Að Þ< p Bð Þ; ð4Þ
and the ordering success is defined by

Outcome ¼ Success; if p̂ Cð Þ< p̂ Að Þ< p̂ Bð ÞFail; otherwisef

ð5Þ
where p and p̂ are the ground truth and predicted relative

positions of the 2-D imaging plane, respectively. The

OSR is defined as the ratio of success cases over all

cases.

We ran several experiments using the US augmen-

tations, the spatial reference noise and the Gaussian blur-

ring separately and together. The performance is

compared with that obtained by using only the baseline

set of augmentations. For each DOF, the best model is

chosen considering the OSR metric, which reflects the

guiding performance on 2-D images. The validation loss

remains informative to avoid overfitting to the training

data when selecting the model for further testing.

Measure of image standardization. To test our

models at a larger scale, we retrospectively run them on

the CAMUS and NTNU-LVD external test data sets

made of 2-D standard views representative of clinical

practice. These data sets contain data labeled as standard

views. Although the labels do not contain information on

the true AC, this experiment allows us to qualitatively

investigate the degree of standardization of recordings

acquired in a clinical setup.

Additionally, we study the inter-operator AC vari-

ability in the image acquisition by quantifying the AC

on recordings from the NTNU 2-D Repeatability data

set.

Real-time image-guiding application. We designed

and developed a prototype application for image guidance

using the FAST framework (Smistad et al. 2019), which

combines image streaming from a GE E95 clinical scanner

(GE Vingmed Ultrasound) and real-time DL inference and

visualization. In the application, as illustrated in Figure 11

and Video S1 (online only), the user chooses a standard

view to acquire and a target box corresponding to this view

is displayed on the short-axis schematic of the heart. The

current position of the transducer relative to the heart is

updated in real time based on the models and represented

as a blue line. When the current view is predicted as

anatomically correct by both the rotation and tilt networks,
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the blue line is inside the target box, which changes color

from red to green to indicate a valid view.

RESULTS

Patient variability

From the output of step 4 in the annotation proce-

dure in Figure 4, we could investigate the variability in

rotation angle from A4C to A2C and ALAX views. The

results illustrated in Figure 3 reveal variability in heart

shapes. This justifies the need for a method that calcu-

lates the transducer position relative to some characteris-

tic heart features rather than an angle-to-target value.

Method validation

Transducer rotation estimation. Figure 7a illus-

trates the predictions through the cardiac cycle for the

six rotational CCSs and suggests good convergence of

the training procedure on the internal validation set of 3-

D slices when using only the baseline augmentations.

These predictions are made on 2-D slices from 3-D vol-

umes, as for training, and are expected to yield the best

case results. As observed, the rotational model separates

the different classes throughout the cardiac cycle

although the LV axis and the rotational positions are

annotated at ED only. Figure 8a is composed of the same

images, but using a model trained with additional US

augmentations and specific pre-processing. To evaluate

performance on 2-D data during training, the OSR was

calculated on recordings from the NTNU 2-D Guiding

data set at the end of each epoch. Results are presented

in the Rotation column of Table 1 and correspond to the

average OSR for the three groups of standard views. The

best model from the baseline experiment ordered the

standard and non-standard 2-D views correctly in 92%

of the cases, while an improved score of 95% was
Fig. 7. Rotational results. Model with the best validation loss fr
annotated CCSs. (b) Model predictions for the NTNU 2-D Guid
from CAMUS and NTNU-LVD. AC = anatomical correctness;
A42C = view between A4C and A2C views; ALAX = apica

CCS = characteristic
obtained when using our additional augmentations and

pre-processing steps. This improvement in the OSR is

also visible in Figure 8b, where the predictions are more

accurate and precise through the heart cycle than in

Figure 7b.

Transducer tilt estimation. On the sliced 3-D data

(Fig. 9, left column), the A4C tilt model predictions are

consistent with the ground truth CCSs, with stable pre-

dictions along the cardiac cycle. Although all three mod-

els converge, the variability and stability are slightly

worse for the A2C and ALAX tilt models, with more

classes overlapping. On the 2-D validation data (center

column), the A4C tilt model has the best OSR of 91%

whereas the OSR is 67% (resp. 47%) for the A2C (resp.

ALAX) view. These scores can be compared against a

random choice scenario leading to a 16.6% correct

ordering, meaning that all the models perform signifi-

cantly better than a random baseline. One can also note

from Table 1 that the improvements obtained with each

augmentation or pre-processing taken separately are not

additive when combined.

Real-time image guiding application

In addition to the quantitative offline assessment,

we assessed the method qualitatively using our real-time

application. Video S1 illustrates only the real-time appli-

cation being used to acquire the three apical standard

views. To the best of our knowledge, this video is the

first providing evidence of a correlation between the

transducer movements, the ultrasound image and the

given feedback for all three apical views throughout a

large number of heart cycles. For all standard and non-

standard views, the position of the blue feedback line on

the short axis schematic was responsive to the transducer

movements and consistent with the structures visible on
om the baseline experiment. (a) Model predictions for the
ing recordings. (c) Density plot of the AC for recordings
A2C = apical two-chamber; A4C = apical four-chamber;
l long-axis; ANE = annulus end; ANS = annulus start;
cross-section.



Fig. 8. Rotational results. Model with the best OSR on 2-D non-standard view validation data from the experiment fea-
turing all the pre-processing and augmentations. (a) Model predictions for the annotated CCSs. (b) model predictions for
the NTNU 2-D Guiding recordings. (c) Density plot of the AC for recordings from CAMUS and NTNU-LVD.
AC = anatomical correctness; A2C = apical two-chamber; A4C = apical four-chamber; A42C = view between A4C and
A2C views; ALAX = apical long-axis; ANE = annulus end; ANS = annulus start; CCS = characteristic cross-section;

OSR = ordering success rate.
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the US image. Figure 11a is a suboptimal A4C view with

a visible LVOT. The blue feedback line is consequently

moved away from the target toward the anterior wall. In

Figure 11b, the operator acquired a good A4C view.

This is confirmed by the application displaying the feed-

back line into the target box, which consequently

switched color to green.
Measure of image standardization

Retrospective assessment of recordings. The pre-

dicted view rotation and tilt for recordings from the

CAMUS and the NTNU-LVD data sets are provided in

the right columns of Figures 8 and 9. The corresponding

visual inspection is available in Video S2 (online only),

which illustrates that for each standard view, suboptimal

recordings are located at the tails of the distributions

whereas standard recordings are located at the center of

the distributions. This suggests that our method is robust

enough to predict the correct transducer position over a

large number of patients.

Additionally, it can be observed that the positional

biases for the external test data sets are consistent with

the positional biases on the 2-D validation data from the

NTNU 2-D Guiding data set, with, for example, the A2C
Table 1. Success rate for orde

Rotation (all views)

Baseline 0.92
Ultrasound augmentations 0.93
Gaussian blurring 0.93
Spatial reference noise 0.90
All 0.95

A2C = apical two-chamber; A4C = apical four-chamber; ALAX = apical lon
Values in boldface show improvement using specific augmentations compar
rotational position being shifted toward the A4C rota-

tional position.

Inter-operator variability. We evaluated the AC

of the assumed optimal apical standard views from the

NTNU 2-D Repeatability data set with our method, with

predictions indicating significant differences among

operators (Fig. 10). For the A2C rotational position, the

method suggested that operator 3 tends to acquire the

A2C views closer to the A4C view. This was confirmed

by the visual inspection available in Video S3 (online

only), in which the RV was typically partly visible. For

the ALAX rotational position, the results suggested that

the ALAX views of operators 1 and 3 are similar to the

A4C view with a vertical flip. Visual inspection of Video

S3 revealed that these views included four chambers (the

RA is not expected in ALAX) and the LVOT (the aorta

valve leaflets are expected to be visible in addition to the

LVOT).

DISCUSSION

We developed and evaluated a deep lear-

ning�based method capable of estimating the anatomi-

cal orientation of apical views in echocardiography.

Multiple deep neural networks were trained to regress
ring non-standard views

Tilt A4C Tilt A2C Tilt ALAX

0.81 0.53 0.44
0.95 0.53 0.33
0.81 0.60 0.37
0.84 0.60 0.42
0.91 0.67 0.47

g-axis.
ed with the baseline training procedure.



Fig. 9. Tilt results. Model with the best OSR on 2-D non-standard view validation data from the experiment featuring all
the pre-processing and augmentations. (left column) Model predictions for the annotated CCSs, (center column) model
predictions for the NTNU 2-D Guiding recordings, (right column) density plot of the AC for recordings from CAMUS
and NTNU-LVD. AC = anatomical correctness; A2C = apical two-chamber; A4C = apical four-chamber;

ALAX = apical long-axis; CCS = characteristic cross-section; OSR = ordering success rate.
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the position of the transducer using 2-D slices generated

from 3-D US volumes as the training material. So far we

considered the transducer rotation and out-of-plane tilt

movements, assuming the user has already positioned

the transducer such that the image plane passes approxi-

mately through the apex of the heart. The method was

evaluated using 2-D ultrasound recordings and exhibited

promising results in terms of robustness and accuracy.

The real-time implementation of the method indicated

the ability to provide the user correct feedback on the

required movements needed to acquire the valid standard

views.

The method is suitable for real-time inference both

on off-the-shelf GPUs and on less powerful hand-held
devices. Thus, it may benefit less experienced users to

obtain anatomically correct standard views for diagnos-

tics, and can contribute to standardize image views

acquired in the echo lab. The method can also be used

for quality control, for instance, to help clinicians auto-

matically select the recording and cardiac cycle most

suitable for a given measurement within an exam con-

sisting of many recordings. This can also be highly use-

ful in a research setting, for instance, when data mining

large amounts of patient examinations.

For both online and offline use cases, the method

can reduce the measurement variability introduced dur-

ing image acquisition and thereby contribute to more

accurate patient management. Used retrospectively, the



Fig. 10. Predicted rotational position by operator for 2-D recordings for the NTNU 2-D Repeatability data set.
A2C = apical two-chamber; A4C = apical four-chamber; A42C = view midway between A4C and A2C views;

ALAX = apical long-axis; ANE = annulus end; ANS = annulus start.
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method can be used as a tool to analyze and improve

scanning habits in individual operators.

An important aspect of our work is the use of 3-D

US recordings as the primary data source, which com-

bined with our semi-automatic annotation procedure

allowed us to use data from 162 patients from several

echo labs. With use of 3-D data, the labeled reference

position is given relative to the heart anatomy. Our

method therefore compensates for the heart movements

inside the chest that occur while breathing, contrarily to

Toporek et al. (2019), who used an external sensor to

acquire the reference position.

Using 3-D US volumes as the primary data source

comes at the price of a discrepancy between the training

data made of 3-D slices and the inference data consisting

of 2-D recordings. We therefore introduced an additional

validation metric, the OSR, which is directly related to

the ability to detect small transducer movements on 2-D

data and thus has more clinical relevance than the tradi-

tional validation loss.

The present work divided the method into simpler

sub-problems, which allowed us to better identify some of

the challenges related to the apical standard views AC

assessment with DL networks. For instance, we found that
the estimated rotational position was more accurate than

the estimated tilt position. The average predictions of the

rotational model over the cardiac cycle on the NTNU 2-D

Guiding in Figure 8b revealed a bias of the A2C rotation

toward the A4C. This bias is also present in the CAMUS

and NTNU-LVD data sets, as illustrated in Figure 8c.

Visual inspection available in Video S2 revealed that many

recordings labeled as standard A2C views partly include

the RV or the coronary sinus vein. This suggests that the

rotational position reference is correct and that the A2C 2-

D recordings from the NTNU 2-D Guiding, CAMUS and

NTNU-LVD data sets do not fully comply with the

expected A2C standard view. Our method thus has the

potential to improve AC for experienced users.

Visual inspection of the tilt recordings from the

NTNU 2-D Guiding data set in the A2C and ALAX posi-

tions revealed that the three recordings are similar,

explaining the lower OSR results for the A2C and

ALAX tilt models compared with the rotational and

A4C tilt models. The lower OSR on the 2-D data is also

consistent with the results on the 3-D slices (Fig. 9d, 9g)

which have a slightly higher variability than the A4C tilt

model (Fig. 9a). This suggests that tilt regression is more

difficult to learn in the A2C and ALAX views than in



Fig. 11. Screen captures of the real-time application prototype.
Left side of the screen shows the ultrasound image streamed
from a GE E95 scanner. Right side of the screen shows the cal-
culated feedback based on the neural network output.
A4C = apical four-chamber; LV = left ventricle; LVOT = left

ventricular outflow tract; RV = right ventricle.
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A4C views, although the data generation and training

procedures are identical. Visual inspection of the tilt

training data revealed that the slices in the A4C direction

are potentially richer in features than in the A2C and

ALAX directions.

For the A4C tilt model, one can note, from

Figure 9b and 9c, a consistent bias for the 2-D A4C view

compared with the A4C sliced in a 3-D volume. Visual

inspection of the training material suggested a bias in the

reference caused by the automatically generated LV

axis. Indeed, we used the geometrical LV axis for the

rotational axis during training data generation, whereas

the axis used in practice by clinicians crosses the mitral

plane slightly closer to the anterior wall. Nevertheless,

such reference biases are not an issue for our method as

they can be quantified from the validation data set and

compensated in post-processing for further inference.

For all DOFs, the position predictions on both vali-

dation slices and the NTNU 2-D Guiding data set did not

significantly vary throughout the cardiac cycle, suggest-

ing that the annotations made at the ED frame are valid

for a complete cycle.

Using the US-specific augmentations improved or

maintained the accuracy on the OSR. This supports the

hypothesis that adding domain knowledge from US
through data augmentation improves the robustness of

the trained networks. Further, the blurring step applied at

both training and inference seems to be beneficial for

performance, suggesting that local image features are

less relevant for the present task.

The CVCNet neural network topology was bench-

marked against other topologies (benchmark available in

the Supplementary Data, online only). Neither smaller

networks (MobileNet V2) nor larger networks (Inveption

V3, ResNet50) provided significantly different results.

As carrying out a clinical superiority test as proposed by

Varoquaux and Cheplygina (2022) is not realistic during

early technical development, we assumed our method

was topology agnostic and focused our efforts on careful

pre-processing of the data and an in-depth evaluation of

several external data sets to demonstrate robustness.

Although designed to quantify the guiding abilities

of our models, the OSR metric is limited by the fact that

we could not control the amount of positive and negative

rotation or tilt introduced by the clinicians who acquired

the NTNU 2-D Guiding data set. This, in addition to the

small size of the NTNU 2-D Guiding data set, makes

conclusions on improvements obtained with data aug-

mentation and pre-processing difficult.

Despite limited quantitative results for our method

caused by the aforementioned, Videos S1�S3 provide

evidence of the accuracy and robustness of our method

by showcasing the association between the transducer

movements, the US images and the predicted position.

In use, the main limitation of our guidance tool is the

need for the correct intercostal point as a starting point.

Although this is achievable for experienced users, position-

ing the transducer over the apex can be challenging for non-

experts. Further clinical testing will identify the improve-

ments required to make the application usable by most users.

Future work will address the explainability of the method as

this is required for the method to be adopted by the medical

community. The same approach should be applicable to

make a guiding tool for the parasternal long- and short-axis

views. However, as 3-D US is more often performed in the

apical window, 3-D data might be less available.
CONCLUSIONS

We have described a method to help ultrasound

users acquire apical standard views of the heart. The

backbone of the method is based on deep neural net-

works performing regression of the transducer position

relative to the heart. The networks were trained on 2-D

slices from 3-D US volumes, where reference positions

were obtained using a semi-automated approach. Testing

on multiple external data sets of 2-D recordings revealed

that the method could detect suboptimal image planes

and unveil individual operators’ scanning habits. This
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suggests that our method is sufficiently robust and accu-

rate to be of clinical value. A real-time application that

supports inference of images streamed from a clinical

US scanner and displays an intuitive feedback on view

position was developed. Examples illustrate the expected

relation between the transducer movements, the ultra-

sound image and the machine learning calculated feed-

back. Further work will quantify the clinical value of the

method inside and outside the echo lab, and map the

potential benefit for expert and non-expert users.
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