Vis enkel innførsel

dc.contributor.authorMastani Joybari, Mahmood
dc.contributor.authorSelvnes, Håkon
dc.contributor.authorVingelsgård, Erling
dc.contributor.authorSevault, Alexis
dc.contributor.authorHafner, Armin
dc.date.accessioned2023-01-09T09:22:21Z
dc.date.available2023-01-09T09:22:21Z
dc.date.created2023-01-06T10:45:43Z
dc.date.issued2022
dc.identifier.citationApplied Thermal Engineering, 2022, 221, 1-16.en_US
dc.identifier.issn1359-4311
dc.identifier.urihttps://hdl.handle.net/11250/3041815
dc.description.abstractIndustrial low-temperature freezing applications are often batch processes, requiring a lot of energy, exerting stress on the electrical grid. To relieve this stress, thermal energy storage can be used. However, there is a lack of suitable storage material for low temperature applications (around −50 °C). Under high pressures, carbon dioxide can be used as the phase change material for storage temperatures around −55 °C. In this study, a parametric study was conducted on the design and operational parameters of an industrial-scale pillow plate heat exchanger with carbon dioxide. Two responses were selected for the analysis where R1 considered the storage size over the phase change time (kWh/h), while R2 indicated the cost over the storage size (USD/kWh). Using design of experiments, a total of 52 simulations were carried out to investigate the parameters under constant heat transfer surface area. Analysis of variance was then carried out followed by correlation development and optimization. It was found that regardless of the process (charging or discharging), for R1 and R2, the difference between refrigerant and carbon dioxide phase change temperatures followed by plate material had the highest significance. In contrast, the refrigerant flow rate had the lowest significance in almost all cases. Moreover, considering an equal weight for the responses, overall optimal conditions were determined for the processes. The recommended values for plate pitch, plate material, difference between refrigerant and carbon dioxide phase change temperatures and refrigerant flow rate were 25 mm, aluminum, 15 °C and 4 kg/s, respectively.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectTaguchi methoden_US
dc.subjectParametric studyen_US
dc.subjectPillow-plate heat exchangeren_US
dc.subjectPhase change materialen_US
dc.subjectCarbon dioxideen_US
dc.subjectThermal energy storageen_US
dc.titleParametric study of low-temperature thermal energy storage using carbon dioxide as the phase change material in pillow plate heat exchangersen_US
dc.title.alternativeParametric study of low-temperature thermal energy storage using carbon dioxide as the phase change material in pillow plate heat exchangersen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s). Published by Elsevier Ltd.en_US
dc.source.pagenumber1-16en_US
dc.source.volume221en_US
dc.source.journalApplied Thermal Engineeringen_US
dc.identifier.doi10.1016/j.applthermaleng.2022.119796
dc.identifier.cristin2101859
dc.relation.projectNorges forskningsråd: 308847en_US
dc.source.articlenumber119796en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal