Show simple item record

dc.contributor.authorTangstad, Espen Johansen
dc.contributor.authorMørkrid, Odd Erik
dc.contributor.authorNordahl, Håvard
dc.contributor.authorKrause, Stefan
dc.contributor.authorMateienko, Denys
dc.contributor.authorDæhlen, Jon
dc.contributor.authorJohanson, Kenneth
dc.date.accessioned2024-05-07T09:21:40Z
dc.date.available2024-05-07T09:21:40Z
dc.date.created2023-11-09T09:11:05Z
dc.date.issued2023
dc.identifier.citationJournal of Physics: Conference Series (JPCS). 2023, 2618: 012018.en_US
dc.identifier.issn1742-6588
dc.identifier.urihttps://hdl.handle.net/11250/3129398
dc.description.abstractTraditionally, container-freight being shipped from central Europe to the coast of Norway has been transported either by road, or by larger containerships to central ports. For the past 3 years the AEGIS consortium has worked to develop a new, disruptive short sea shipping feeder-loop service based on mother and daughter ships [1]. The hypothesis is that introducing smaller, autonomous, battery-powered vessels into the fjords of Norway would open new business areas, provide access to remote regions, and allow shipping companies to take on cargo that could not previously be transported by water. Such a transport system has the potential of reducing cost, GHG emissions and external costs, while increasing frequency of service and the waterborne cargo volume in Europe. One of the main challenges of the mother-daughter logistic system is how transshipment affects defined key performance indicators (KPIs), especially in terms of cost. For this purpose, the SIMPACT tool [2] was developed in the H2020 projects AEGIS and AUTOSHIP. The tool allows for rapid iterations of maritime logistic systems through discrete event scheduling, and estimation of energy, fuel, emission, and cost. This paper will present results from a case-study on two different daughter ship concepts. The concepts are evaluated through cost and environmental KPIs presented in [1], in addition to external costs based on the European handbook on the external costs of transport [3]. Results from the case-studies indicate that transport systems including green daughter-vessels have the potential of being cost competitive and would lower externalities compared to the baseline truck transportation system.en_US
dc.language.isoengen_US
dc.publisherIOP Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleEvaluation of an autonomous, short sea shipping feeder-loop service through advanced simulationsen_US
dc.title.alternativeEvaluation of an autonomous, short sea shipping feeder-loop service through advanced simulationsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderPublished by IOP Publishing under a CC BY license.en_US
dc.source.pagenumber19en_US
dc.source.volume2618en_US
dc.source.journalJournal of Physics: Conference Series (JPCS)en_US
dc.identifier.doi10.1088/1742-6596/2618/1/012018
dc.identifier.cristin2194335
dc.relation.projectEC/H2020/859992en_US
dc.relation.projectEC/H2020/815012en_US
dc.source.articlenumber012018en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal