Vis enkel innførsel

dc.contributor.authorGaarder, Jørn Emil
dc.contributor.authorFriis, Naja Kastrup
dc.contributor.authorLarsen, Ingrid Sølverud
dc.contributor.authorTime, Berit
dc.contributor.authorMøller, Eva B.
dc.contributor.authorKvande, Tore
dc.date.accessioned2023-03-21T13:38:01Z
dc.date.available2023-03-21T13:38:01Z
dc.date.created2023-03-20T14:58:14Z
dc.date.issued2023
dc.identifier.issn0360-1323
dc.identifier.urihttps://hdl.handle.net/11250/3059560
dc.description.abstractDetermining the optimal insulation thickness is useful for designing zero-emission buildings (ZEB) to minimize the environmental impacts. The energy required to heat buildings in cold climates is relatively high. Substantial reductions in the total energy usage of a building can be achieved by reducing the U-value of the external surfaces. Increasing the insulation thickness reduces the operational CO2 emissions, although simultaneously increases the embodied CO2 emissions from materials. To mitigate climate change, Norway and Denmark are trending towards stricter regulations to limit energy use in buildings. However, these countries have no current regulations in the building codes for limit embodied CO2 emissions from materials. This study analyzes the influence of the energy emission factor and future climate change (scenarios?) on the optimal insulation thickness. We used three independent models for case studies in Greenland and Norway. The differences between the case studies highlight the influence of model parameter choices, such as indoor climate, energy emission factor and material emissions, whereas the similarities may be used to analyze the problem from a broader perspective. The results show that optimal insulation thickness calculations are most valuable for case studies in which the energy emission factor is low. Considering energy emission factors above 25–30 g CO2eq/kWh, operational emissions dominated the calculation results in all case studies.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsCC BY 4.0*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.subjectBuildingen_US
dc.subjectOperational emissionsen_US
dc.subjectEmbodied emissionsen_US
dc.subjectEnergy emission factoren_US
dc.subjectClimate changeen_US
dc.subjectEnergy useen_US
dc.titleOptimization of thermal insulation thickness pertaining to embodied and operational GHG emissions in cold climates – Future and present casesen_US
dc.title.alternativeOptimization of thermal insulation thickness pertaining to embodied and operational GHG emissions in cold climates – Future and present casesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The authorsen_US
dc.subject.nsiVDP::Teknologi: 500en_US
dc.source.volume234en_US
dc.source.journalBuilding and Environmenten_US
dc.identifier.doi10.1016/j.buildenv.2023.110187
dc.identifier.cristin2135403
dc.relation.projectNorges forskningsråd: 237859en_US
dc.source.articlenumber110187en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

CC BY 4.0
Med mindre annet er angitt, så er denne innførselen lisensiert som CC BY 4.0