Vis enkel innførsel

dc.contributor.authorGaleckas, Augustinas
dc.contributor.authorKarsthof, Robert Michael
dc.contributor.authorGana, Kingsly
dc.contributor.authorKok, Angela
dc.contributor.authorBathen, Marianne Etzelmüller
dc.contributor.authorVines, Lasse
dc.contributor.authorKuznetsov, Andrej
dc.date.accessioned2023-02-21T14:46:09Z
dc.date.available2023-02-21T14:46:09Z
dc.date.created2022-11-28T18:18:46Z
dc.date.issued2022
dc.identifier.citationPhysica Status Solidi (a) applications and materials science. 2022, 2200449.en_US
dc.identifier.issn1862-6300
dc.identifier.urihttps://hdl.handle.net/11250/3052844
dc.description.abstractThe carrier lifetime control over 150 μm thick 4H-SiC epitaxial layers via thermal generation and annihilation of carbon vacancy (VC) related Z1/2 lifetime killer sites is reported. The defect developments upon typical SiC processing steps, such as high- and moderate-temperature anneals in the presence of a carbon cap, are monitored by combining electrical characterization techniques capable of VC depth-profiling, capacitance–voltage (CV) and deep-level transient spectroscopy (DLTS), with a novel all-optical approach of cross-sectional carrier lifetime profiling across 4H-SiC epilayer/substrate based on imaging time-resolved photoluminescence (TRPL) spectroscopy in orthogonal pump-probe geometry, which readily exposes in-depth efficacy of defect reduction and surface recombination effects. The lifetime control is realized by initial high-temperature treatment (1800 °C) to increase VC concentration to ≈1013 cm−3 level followed by a moderate-temperature (1500 °C) post-annealing of variable duration under C-rich thermodynamic equilibrium conditions. The post-annealing carried out for 5 h in effect eliminates VC throughout the entire ultra-thick epilayer. The reduction of VC-related Z1/2 sites is proven by a significant lifetime increase from 0.8 to 2.5 μs. The upper limit of lifetimes in terms of carrier surface leakage and the presence of other nonradiative recombination centers besides Z1/2, possibly related to residual impurities such as boron are discussed.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.urihttps://onlinelibrary.wiley.com/doi/10.1002/pssa.202200449
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleCross-Sectional Carrier Lifetime Profiling and Deep Level Monitoring in Silicon Carbide Films Exhibiting Variable Carbon Vacancy Concentrationsen_US
dc.title.alternativeCross-Sectional Carrier Lifetime Profiling and Deep Level Monitoring in Silicon Carbide Films Exhibiting Variable Carbon Vacancy Concentrationsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authorsen_US
dc.source.pagenumber7en_US
dc.source.journalPhysica Status Solidi (a) applications and materials scienceen_US
dc.identifier.doi10.1002/pssa.202200449
dc.identifier.cristin2083113
dc.relation.projectNorges forskningsråd: 245963en_US
dc.relation.projectNorges forskningsråd: 325573en_US
dc.relation.projectNorges forskningsråd: 251131en_US
dc.relation.projectNorges forskningsråd: 274742en_US
dc.relation.projectSigma2: NN9136Ken_US
dc.source.articlenumber2200449en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal