Vis enkel innførsel

dc.contributor.authorManni, Mattia
dc.contributor.authorNocente, Alessandro
dc.contributor.authorBellmann, Martin Pawel
dc.contributor.authorLobaccaro, Gabriele
dc.date.accessioned2023-02-13T09:11:29Z
dc.date.available2023-02-13T09:11:29Z
dc.date.created2023-02-10T10:40:00Z
dc.date.issued2023
dc.identifier.issn2071-1050
dc.identifier.urihttps://hdl.handle.net/11250/3050262
dc.description.abstractEvaluating how the sources of uncertainty in solar modelling (e.g., input parameters, developed model chain) can influence the results’ accuracy is one of the main challenges when applied at high latitudes. In this study, a multi-stage validation workflow is implemented around five main stages: data acquisition, data quality check, solar radiation modelling, photovoltaic energy modelling, and experimental validation. Different data sources such as satellite observations, numerical reanalysis, and on-site ground measurements are considered as inputs, while the outcomes from each step of the model chain (e.g., decomposition modelling, transposition modelling, photovoltaic energy modelling) are compared against observations recorded from the solar radiation network at the Norwegian University of Science and Technology (NTNU-Solarnet) in Trondheim (Norway). In the first and second validation stages, the decomposition and transposition models with measured input parameters show the best accuracy indicators, but they do not fulfill the validation criteria. Conversely, in the third validation stage, the photovoltaic energy models with on-site ground measurements as inputs are experimentally validated. In conclusion, at high latitudes, the most accurate results are obtained when monitored solar irradiation data are used instead of satellite observations and numerical reanalysis. Furthermore, the shortest model chain is preferred, with equal data sources.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectvalidationen_US
dc.subjectsolar radiation dataseten_US
dc.subjectphotovoltaic energy modellingen_US
dc.subjecttransposition modellingen_US
dc.subjectdecomposition modellingen_US
dc.titleMulti‐Stage Validation of a Solar Irradiance Model Chain: An Application at High Latitudesen_US
dc.title.alternativeMulti‐Stage Validation of a Solar Irradiance Model Chain: An Application at High Latitudesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/license s/by/4.0/).en_US
dc.source.pagenumber18en_US
dc.source.volume15en_US
dc.source.journalSustainabilityen_US
dc.source.issue4en_US
dc.identifier.doi10.3390/su15042938
dc.identifier.cristin2124788
dc.relation.projectNorges forskningsråd: 324243en_US
dc.source.articlenumber2938en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal