Vis enkel innførsel

dc.contributor.authorMalekibagherabadi, Kamyar
dc.contributor.authorSkjong, Stian
dc.contributor.authorBruinsma, Jogchum
dc.contributor.authorPedersen, Eilif
dc.date.accessioned2023-01-12T10:24:52Z
dc.date.available2023-01-12T10:24:52Z
dc.date.created2022-10-11T14:58:38Z
dc.date.issued2022
dc.identifier.citationInternational Journal of Naval Architecture and Ocean Engineering. 2022, 14 .en_US
dc.identifier.issn2092-6782
dc.identifier.urihttps://hdl.handle.net/11250/3042960
dc.description.abstractThis article presents a model of a marine power plant with hybrid power sources consisting of Proton Exchange Membrane Fuel Cells (PEMFCs) and batteries. The primary objective is to develop a system-level fidelity model of the fuel cell-fed marine power systems with real-time capabilities. The model encompasses various mechanical and electrical domains such as the air-supply and the hydrogen auxiliary sub-systems of the PEMFC system, the power management system, the DC electrical converters with average - value assumptions and thruster and propeller dynamics. Moreover, the PEMFC system model in this work is verified and tuned with the experimental dynamic behavior of a PEMFC with a power capacity of 500 kW for specific applications in the marine sector. The presented model can be implemented for investigating the system performance for simulator applications, designing high-level controls, sizing and optimization. Indeed, the modular approach of the bond graph modeling strategy provides flexibility in the configuration and capacity of the power sources, as well as storage for further studies. Furthermore, this model of the fuel cell-fed power system is practical for feasibility studies of various maneuvering operations with a potential of integrating with the co-simulation applications. In the end, a simulation with torque set-points to the thrusters consisting of load steps and noises are proposed to evaluate the system performance, the controller robustness, and the high-level control performance in load sharing.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectAveraged-value converter modelingen_US
dc.subjectSystem-level modelingen_US
dc.subjectCell systemen_US
dc.subjectPEM fuelen_US
dc.subjectMarine hybrid power systemen_US
dc.titleSystem-level modeling of marine power plant with PEMFC system and batteryen_US
dc.title.alternativeSystem-level modeling of marine power plant with PEMFC system and batteryen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 Society of Naval Architects of Korea. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND licens.en_US
dc.source.pagenumber13en_US
dc.source.volume14en_US
dc.source.journalInternational Journal of Naval Architecture and Ocean Engineeringen_US
dc.identifier.doi10.1016/j.ijnaoe.2022.100487
dc.identifier.cristin2060557
dc.relation.projectNorges forskningsråd: 237917en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal