Vis enkel innførsel

dc.contributor.authorPruvost, Florian
dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorArnaiz del Pozo, Carlos
dc.contributor.authorZaabout, Abdelghafour
dc.date.accessioned2022-12-12T11:50:23Z
dc.date.available2022-12-12T11:50:23Z
dc.date.created2022-12-07T10:46:42Z
dc.date.issued2022
dc.identifier.citationEnergy Conversion and Management. 2022, 274 1-12.en_US
dc.identifier.issn0196-8904
dc.identifier.urihttps://hdl.handle.net/11250/3037234
dc.description.abstractRising climate change ambitions require large-scale clean hydrogen production in the near term. “Blue” hydrogen from conventional steam methane reforming (SMR) with pre-combustion CO2 capture can fulfil this role. This study therefore presents techno-economic assessments of a range of SMR process configurations to minimize hydrogen production costs. Results showed that pre-combustion capture can avoid up to 80% of CO2 emissions cheaply at 35 €/ton, but the final 20% of CO2 capture is much more expensive at a marginal CO2 avoidance cost around 150 €/ton. Thus, post-combustion CO2 capture should be a better solution for avoiding the final 20% of CO2. Furthermore, an advanced heat integration scheme that recovers most of the steam condensation enthalpy before the CO2 capture unit can reduce hydrogen production costs by about 6%. Two hybrid hydrogen production options were also assessed. First, a “blue-green” hydrogen plant that uses clean electricity to heat the reformer achieved similar hydrogen production costs to the pure blue configuration. Second, a “blue-turquoise” configuration that replaces the pre-reformer with molten salt pyrolysis for converting higher hydrocarbons to a pure carbon product can significantly reduce costs if carbon has a similar value to hydrogen. In conclusion, conventional pre-combustion CO2 capture from SMR is confirmed as a good solution for kickstarting the hydrogen economy, and it can be tailored to various market conditions with respect to CO2, electricity, and pure carbon prices.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectTechno-economic assessmenten_US
dc.subjectMethane pyrolysisen_US
dc.subjectCO2 captureen_US
dc.subjectSteam methane reformingen_US
dc.subjectHydrogen productionen_US
dc.titleBlue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 captureen_US
dc.title.alternativeBlue, green, and turquoise pathways for minimizing hydrogen production costs from steam methane reforming with CO2 captureen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authors. Published by Elsevier Ltd.en_US
dc.source.pagenumber1-12en_US
dc.source.volume274en_US
dc.source.journalEnergy Conversion and Managementen_US
dc.identifier.doi10.1016/j.enconman.2022.116458
dc.identifier.cristin2089925
dc.source.articlenumber116458en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal