Vis enkel innførsel

dc.contributor.authorSønstevold, Linda
dc.contributor.authorYadav, Mukesh
dc.contributor.authorArnfinnsdottir, Nina Bjørk
dc.contributor.authorHerbjørnrød, Aina Kristin
dc.contributor.authorJensen, Geir Uri
dc.contributor.authorAksnes, Astrid
dc.contributor.authorMielnik, Michal Marek
dc.date.accessioned2022-12-05T16:03:09Z
dc.date.available2022-12-05T16:03:09Z
dc.date.created2022-09-26T12:28:17Z
dc.date.issued2022
dc.identifier.citationJournal of Micromechanics and Microengineering (JMM). 2022, 32 (7), 075008.en_US
dc.identifier.issn0960-1317
dc.identifier.urihttps://hdl.handle.net/11250/3035936
dc.description.abstractAttachment of biorecognition molecules prior to microfluidic packaging is advantageous for many silicon biosensor-based lab-on-a-chip (LOC) devices. This necessitates biocompatible bonding of the microfluidic cartridge, which, due to thermal or chemical incompatibility, excludes standard microfabrication bonding techniques. Here, we demonstrate a novel processing approach for a commercially available, two-step curable polymer to obtain biocompatible ultraviolet initiated (UVA)-bonding of polymer microfluidics to silicon biosensors. Biocompatibility is assessed by UVA-bonding to antibody-functionalized ring resonator sensors and performing antigen capture assays while optically monitoring the sensor response. The assessments indicate normal biological function of the antibodies after UVA-bonding with selective binding to the target antigen. The bonding strength between polymer and silicon chips (non-biofunctionalized and biofunctionalized) is determined in terms of static liquid pressure. Polymer microfluidic cartridges are stored for more than 18 weeks between cartridge molding and cartridge-to-silicon bonding. All bonded devices withstand more than 2500 mbar pressure, far exceeding the typical requirements for LOC applications, while they may also be de-bonded after use. We suggest that these characteristics arise from bonding mainly through intermolecular forces, with a large extent of hydrogen bonds. Dimensional fidelity assessed by microscopy imaging shows less than 2% shrinkage through the molding process and the water contact angle is approximately 80°. As there is generally little absorption of UVA light (365 nm) in proteins and nucleic acids, this UVA-bonding procedure should be applicable for packaging a wide variety of biosensors into lab-on-a-chip systems.en_US
dc.language.isoengen_US
dc.publisherIOPen_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectBiocompatible bondingen_US
dc.subjectSilicon biosensoren_US
dc.subjectSilicon-polymer integrationen_US
dc.subjectOff-stoichiometry-thiol-ene-epoxyen_US
dc.subjectLab-on-a-chipen_US
dc.subjectMicrofluidic packagingen_US
dc.titleBiocompatible bonding of a rigid off-stoichiometry thiol-ene-epoxy polymer microfluidic cartridge to a biofunctionalized silicon biosensoren_US
dc.title.alternativeBiocompatible bonding of a rigid off-stoichiometry thiol-ene-epoxy polymer microfluidic cartridge to a biofunctionalized silicon biosensoren_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber11en_US
dc.source.volume32en_US
dc.source.journalJournal of Micromechanics and Microengineering (JMM)en_US
dc.source.issue7en_US
dc.identifier.doi10.1088/1361-6439/ac6ebf
dc.identifier.cristin2055421
dc.relation.projectNorges forskningsråd: 248869en_US
dc.relation.projectNorges forskningsråd: 295864en_US
dc.source.articlenumber075008en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal