Vis enkel innførsel

dc.contributor.authorTabib, Mandar
dc.contributor.authorPawar, Suraj
dc.contributor.authorAhmed, Shady E
dc.contributor.authorRasheed, Adil
dc.contributor.authorSan, Omer
dc.date.accessioned2022-08-05T12:36:27Z
dc.date.available2022-08-05T12:36:27Z
dc.date.created2021-09-23T22:57:12Z
dc.date.issued2021
dc.identifier.citationJournal of Physics: Conference Series (JPCS). 2021, 2018, 012038.en_US
dc.identifier.issn1742-6588
dc.identifier.urihttps://hdl.handle.net/11250/3010377
dc.description.abstractIn this study, we present a parametric non-intrusive reduced order modeling framework as a potential digital twin enabler for fluid flow related applications. The case study considered here involves building-induced flows and turbulence with inlet turbulence value as a parameter. The framework proposed employs a Grassmann manifold interpolation approach (GI) for obtaining basis functions corresponding to new values of parameter, and exploits the time series prediction capability of long short-term memory (LSTM) recurrent neural network for obtaining temporal coefficients associated with the new basis functions. The methodology works in the following way: (i) in the training phase, the LSTM model is trained on the modal coefficients extracted from the high-resolution data using proper orthogonal decomposition (POD) transform for the known values of parameter, and (ii) in the testing phase, the trained model predicts the modal coefficients for the total time recursively based on the initial time history for the new value of parameter. Then, we reconstruct the flow fields for the new value of parameter (new inlet turbulent value) using the GI modulated basis functions and LSTM predicted associated temporal coefficients. To assess the performance of the proposed model, the ROM-LG predictions are compared with the high-dimensional full-order model solutions using L1 and L2 error analyses as well as with the conventional POD based ROM (ROM-POD) solutions. The results indicate that the non-intrusive ROM (ROM-LG) framework yields a stable solution for the velocity fields and for short-term prediction of dynamic turbulent kinetic energy fields. This work has scope for further development and will be useful for building-integrated wind energy and urban drone operation in a smart-city digital twin platform.en_US
dc.language.isoengen_US
dc.publisherIOPen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleA non-intrusive parametric reduced order model for urban wind flow using deep learning and Grassmann manifolden_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber10en_US
dc.source.volume2018en_US
dc.source.journalJournal of Physics: Conference Series (JPCS)en_US
dc.identifier.doi10.1088/1742-6596/2018/1/012038
dc.identifier.cristin1937936
dc.source.articlenumber012038en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal