Show simple item record

dc.contributor.authorLöschenbrand, Markus
dc.contributor.authorGros, Sebastien
dc.contributor.authorLakshmanan, Venkatachalam
dc.date.accessioned2022-03-11T12:34:18Z
dc.date.available2022-03-11T12:34:18Z
dc.date.created2021-09-28T14:12:16Z
dc.date.issued2021
dc.identifier.citation2021 International Conference on Smart Energy Systems and Technologies - SESTen_US
dc.identifier.isbn978-1-7281-7660-4
dc.identifier.urihttps://hdl.handle.net/11250/2984656
dc.description.abstractIn this paper we present a simple and intuitive method for fitting a non-linear Bayesian regression model on short-term load forecasts. Such models have been implemented via Bayesian neural networks, which are known for their hyper-parameter sensitivity. We instead show a more general method to fit any regression model and demonstrate this by using a tree-model. Further, we evaluate the results against non-linear quantile regression, a common technique in probabilistic load forecasting. The resulting model allows to generate samples for future scenarios and thus can be applied to operations problems such as dynamic control of battery storage, an application that quantile regression is unfit for.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.ispartof2021 International Conference on Smart Energy Systems and Technologies - SEST
dc.titleGenerating scenarios from probabilistic short-term load forecasts via non-linear Bayesian regressionen_US
dc.typeChapteren_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.identifier.cristin1939861
dc.relation.projectNorges forskningsråd: 257626en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record