• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF Energi
  • View Item
  •   Home
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF Energi
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generating scenarios from probabilistic short-term load forecasts via non-linear Bayesian regression

Löschenbrand, Markus; Gros, Sebastien; Lakshmanan, Venkatachalam
Chapter, Peer reviewed
Accepted version
Thumbnail
View/Open
L%C3%B6schenbrand2021gsf_akseptert.pdf (2.724Mb)
URI
https://hdl.handle.net/11250/2984656
Date
2021
Metadata
Show full item record
Collections
  • Publikasjoner fra CRIStin - SINTEF Energi [1858]
  • SINTEF Energi [2006]
Original version
2021 International Conference on Smart Energy Systems and Technologies - SEST  
Abstract
In this paper we present a simple and intuitive method for fitting a non-linear Bayesian regression model on short-term load forecasts. Such models have been implemented via Bayesian neural networks, which are known for their hyper-parameter sensitivity. We instead show a more general method to fit any regression model and demonstrate this by using a tree-model. Further, we evaluate the results against non-linear quantile regression, a common technique in probabilistic load forecasting. The resulting model allows to generate samples for future scenarios and thus can be applied to operations problems such as dynamic control of battery storage, an application that quantile regression is unfit for.
Publisher
IEEE

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit