A recurrent neural network for urban long-term traffic flow forecasting
Peer reviewed, Journal article
Published version

View/ Open
Date
2020Metadata
Show full item recordCollections
- Publikasjoner fra CRIStin - SINTEF AS [6268]
- SINTEF Digital [2678]
Abstract
This paper investigates the use of recurrent neural network to predict urban long-term traffic flows. A representation of the long-term flows with related weather and contextual information is first introduced. A recurrent neural network approach, named RNN-LF, is then proposed to predict the long-term of flows from multiple data sources. Moreover, a parallel implementation on GPU of the proposed solution is developed (GRNN-LF), which allows to boost the performance of RNN-LF. Several experiments have been carried out on real traffic flow including a small city (Odense, Denmark) and a very big city (Beijing). The results reveal that the sequential version (RNN-LF) is capable of dealing effectively with traffic of small cities. They also confirm the scalability of GRNN-LF compared to the most competitive GPU-based software tools when dealing with big traffic flow such as Beijing urban data.