Show simple item record

dc.contributor.authorPolfus, Jonathan M.
dc.contributor.authorXing, Wen
dc.contributor.authorPecanac, Goran
dc.contributor.authorFossdal, Anita
dc.contributor.authorHanetho, Sidsel Meli
dc.contributor.authorLarring, Yngve
dc.contributor.authorMalzbender, Jürgen
dc.contributor.authorFontaine, Marie-Laure
dc.contributor.authorBredesen, Rune
dc.date.accessioned2020-12-21T13:16:20Z
dc.date.available2020-12-21T13:16:20Z
dc.date.created2016-02-12T16:36:23Z
dc.date.issued2016
dc.identifier.citationJournal of Membrane Science. 2016, 499 172-178.en_US
dc.identifier.issn0376-7388
dc.identifier.urihttps://hdl.handle.net/11250/2720616
dc.description.abstractOxygen permeation measurements were performed on dense symmetric samples of Ca0.5Sr0.5Ti0.6Fe0.15Mn0.25O3−δ and compared to CaTi0.6Fe0.15Mn0.25O3−δ in order to assess the influence of the perovskite lattice volume on oxygen permeation. Oxygen flux measurements were performed in the temperature range 700–1000 °C and as function of feed side pO2 from 10−2 to 1 bar, and at high pressures up to 4 bar with a pO2 of 3.36 bar. The O2 permeability of the Sr-doped sample was significantly lower than that of the Sr-free sample, amounting to 3.9×10−3 mL min−1 cm−1 at 900 °C for a feed side pO2 of 0.21 bar. The O2 permeability of CaTi0.6Fe0.15Mn0.25O3−δ shows little variation with increased feed side pressures and reaches 1.5×10−2 mL min−1 cm−1 at 900 °C for a feed side pO2 of 3.36 bar. This is approximately 1.5 times higher than the O2 permeability with a feed side pO2 of 0.21 bar. Furthermore, in order to assess the applicability of CaTi0.6Fe0.15Mn0.25O3−δ as an oxygen membrane material, creep tests were performed under compressive loads of 30 and 63 MPa, respectively, in air in the temperature range 700–1000 °C; the results indicate a high creep resistance for this class of materials. The measured O2 permeabilities and creep rates are compared with other state-of-the-art membrane materials and their performance for relevant applications is discussed in terms of chemical and mechanical stability.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectCalcium titanateen_US
dc.subjectCaTiO3en_US
dc.subjectCreepen_US
dc.subjectAmbipolar transporten_US
dc.subjectDense ceramic oxygen membraneen_US
dc.titleOxygen permeation and creep behavior of Ca1-xSrxTi0.6Fe0.15Mn0.25O3-δ (x=0, 0.5) membrane materialsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors’ accepted and refereed manuscript to the article.This manuscript version is made available under the CC-BY-NC-ND 4.0 license DOI: https://doi.org/10.1016/j.memsci.2015.10.016en_US
dc.source.pagenumber172-178en_US
dc.source.volume499en_US
dc.source.journalJournal of Membrane Scienceen_US
dc.identifier.doi10.1016/j.memsci.2015.10.016
dc.identifier.cristin1335500
cristin.unitcode7401,80,3,2
cristin.unitcode7401,80,3,1
cristin.unitcode7401,80,3,3
cristin.unitcode7401,80,3,0
cristin.unitnameTynnfilm og membranteknologi
cristin.unitnameNye energiløsninger
cristin.unitnameSorbentbaserte teknologier
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal