Vis enkel innførsel

dc.contributor.authorPolfus, Jonathan M.
dc.contributor.authorXing, Wen
dc.contributor.authorPecanac, Goran
dc.contributor.authorFossdal, Anita
dc.contributor.authorHanetho, Sidsel Meli
dc.contributor.authorLarring, Yngve
dc.contributor.authorMalzbender, Jürgen
dc.contributor.authorFontaine, Marie-Laure
dc.contributor.authorBredesen, Rune
dc.date.accessioned2020-12-21T13:16:20Z
dc.date.available2020-12-21T13:16:20Z
dc.date.created2016-02-12T16:36:23Z
dc.date.issued2016
dc.identifier.citationJournal of Membrane Science. 2016, 499 172-178.en_US
dc.identifier.issn0376-7388
dc.identifier.urihttps://hdl.handle.net/11250/2720616
dc.description.abstractOxygen permeation measurements were performed on dense symmetric samples of Ca0.5Sr0.5Ti0.6Fe0.15Mn0.25O3−δ and compared to CaTi0.6Fe0.15Mn0.25O3−δ in order to assess the influence of the perovskite lattice volume on oxygen permeation. Oxygen flux measurements were performed in the temperature range 700–1000 °C and as function of feed side pO2 from 10−2 to 1 bar, and at high pressures up to 4 bar with a pO2 of 3.36 bar. The O2 permeability of the Sr-doped sample was significantly lower than that of the Sr-free sample, amounting to 3.9×10−3 mL min−1 cm−1 at 900 °C for a feed side pO2 of 0.21 bar. The O2 permeability of CaTi0.6Fe0.15Mn0.25O3−δ shows little variation with increased feed side pressures and reaches 1.5×10−2 mL min−1 cm−1 at 900 °C for a feed side pO2 of 3.36 bar. This is approximately 1.5 times higher than the O2 permeability with a feed side pO2 of 0.21 bar. Furthermore, in order to assess the applicability of CaTi0.6Fe0.15Mn0.25O3−δ as an oxygen membrane material, creep tests were performed under compressive loads of 30 and 63 MPa, respectively, in air in the temperature range 700–1000 °C; the results indicate a high creep resistance for this class of materials. The measured O2 permeabilities and creep rates are compared with other state-of-the-art membrane materials and their performance for relevant applications is discussed in terms of chemical and mechanical stability.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectCalcium titanateen_US
dc.subjectCaTiO3en_US
dc.subjectCreepen_US
dc.subjectAmbipolar transporten_US
dc.subjectDense ceramic oxygen membraneen_US
dc.titleOxygen permeation and creep behavior of Ca1-xSrxTi0.6Fe0.15Mn0.25O3-δ (x=0, 0.5) membrane materialsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is the authors’ accepted and refereed manuscript to the article.This manuscript version is made available under the CC-BY-NC-ND 4.0 license DOI: https://doi.org/10.1016/j.memsci.2015.10.016en_US
dc.source.pagenumber172-178en_US
dc.source.volume499en_US
dc.source.journalJournal of Membrane Scienceen_US
dc.identifier.doi10.1016/j.memsci.2015.10.016
dc.identifier.cristin1335500
cristin.unitcode7401,80,3,2
cristin.unitcode7401,80,3,1
cristin.unitcode7401,80,3,3
cristin.unitcode7401,80,3,0
cristin.unitnameTynnfilm og membranteknologi
cristin.unitnameNye energiløsninger
cristin.unitnameSorbentbaserte teknologier
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal