Show simple item record

dc.contributor.authorMcCay, Katie
dc.contributor.authorKongstein, Ole Edvard
dc.contributor.authorØdegård, Anders
dc.contributor.authorBarnett, Alejandro
dc.contributor.authorSeland, Frode
dc.date.accessioned2020-12-18T12:11:03Z
dc.date.available2020-12-18T12:11:03Z
dc.date.created2018-05-23T12:44:00Z
dc.date.issued2018
dc.identifier.citationInternational journal of hydrogen energy. 2018, 43 (18), 9006-9014.en_US
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11250/2720192
dc.description.abstractA novel investigation to decrease the interfacial contact resistance of stainless steel bipolar plates was performed. A thin layer of Sn was electrodeposited onto a bipolar plate and subsequently joined with a gas diffusion layer through hot-pressing at a temperature around the melting point of tin. This procedure was optimised, depositing 30 μm of Sn onto the stainless steel bipolar plate before hot-pressing at 230 °C and 0.5 bar for 20 min. A contact resistance of 5.45 mΩ cm2 at 140 N cm−2 was obtained, with low values maintained after exposure to both in-situ and ex-situ conditions. The in-situ testing in a fuel cell produced excellent results, with minor increases in contact resistance from 8.8 to 9.2 mΩ cm2 and decreases in cell voltage from 0.714 to 0.667 V after 200 h of operation. These values are comparable to gold plated stainless steel, showing that combining a gas diffusion layer with electrodeposited Sn through hot-pressing is a promising low-cost coating for bipolar plates in PEM fuel cells.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectInterfacial contact resistanceen_US
dc.subjectTinen_US
dc.subjectElectrodepositionen_US
dc.subjectStainless steel bipolar plateen_US
dc.subjectPEM fuel cellen_US
dc.titleSoldering a gas diffusion layer to a stainless steel bipolar plate using metallic tinen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 11.4.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber9006-9014en_US
dc.source.volume43en_US
dc.source.journalInternational journal of hydrogen energyen_US
dc.source.issue18en_US
dc.identifier.doi10.1016/j.ijhydene.2018.03.188
dc.identifier.cristin1586207
cristin.unitcode7401,80,0,0
cristin.unitcode7401,80,64,0
cristin.unitcode7401,80,62,0
cristin.unitnameSINTEF Industri
cristin.unitnameMaterialer og nanoteknologi
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal