Vis enkel innførsel

dc.contributor.authorMcCay, Katie
dc.contributor.authorKongstein, Ole Edvard
dc.contributor.authorØdegård, Anders
dc.contributor.authorBarnett, Alejandro
dc.contributor.authorSeland, Frode
dc.date.accessioned2020-12-18T12:11:03Z
dc.date.available2020-12-18T12:11:03Z
dc.date.created2018-05-23T12:44:00Z
dc.date.issued2018
dc.identifier.citationInternational journal of hydrogen energy. 2018, 43 (18), 9006-9014.en_US
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11250/2720192
dc.description.abstractA novel investigation to decrease the interfacial contact resistance of stainless steel bipolar plates was performed. A thin layer of Sn was electrodeposited onto a bipolar plate and subsequently joined with a gas diffusion layer through hot-pressing at a temperature around the melting point of tin. This procedure was optimised, depositing 30 μm of Sn onto the stainless steel bipolar plate before hot-pressing at 230 °C and 0.5 bar for 20 min. A contact resistance of 5.45 mΩ cm2 at 140 N cm−2 was obtained, with low values maintained after exposure to both in-situ and ex-situ conditions. The in-situ testing in a fuel cell produced excellent results, with minor increases in contact resistance from 8.8 to 9.2 mΩ cm2 and decreases in cell voltage from 0.714 to 0.667 V after 200 h of operation. These values are comparable to gold plated stainless steel, showing that combining a gas diffusion layer with electrodeposited Sn through hot-pressing is a promising low-cost coating for bipolar plates in PEM fuel cells.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectInterfacial contact resistanceen_US
dc.subjectTinen_US
dc.subjectElectrodepositionen_US
dc.subjectStainless steel bipolar plateen_US
dc.subjectPEM fuel cellen_US
dc.titleSoldering a gas diffusion layer to a stainless steel bipolar plate using metallic tinen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2018. This is the authors’ accepted and refereed manuscript to the article. Locked until 11.4.2020 due to copyright restrictions. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.source.pagenumber9006-9014en_US
dc.source.volume43en_US
dc.source.journalInternational journal of hydrogen energyen_US
dc.source.issue18en_US
dc.identifier.doi10.1016/j.ijhydene.2018.03.188
dc.identifier.cristin1586207
cristin.unitcode7401,80,0,0
cristin.unitcode7401,80,64,0
cristin.unitcode7401,80,62,0
cristin.unitnameSINTEF Industri
cristin.unitnameMaterialer og nanoteknologi
cristin.unitnameBærekraftig energiteknologi
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal