Vis enkel innførsel

dc.contributor.authorBusch, Alexander
dc.contributor.authorJohansen, Stein Tore
dc.date.accessioned2020-11-04T11:49:36Z
dc.date.available2020-11-04T11:49:36Z
dc.date.created2020-10-20T12:37:51Z
dc.date.issued2020
dc.identifier.citationPowder Technology. 2020, 364 429-456.en_US
dc.identifier.issn0032-5910
dc.identifier.urihttps://hdl.handle.net/11250/2686366
dc.description.abstract( Engelsk ) As a subproblem of solid transport in wellbores, we have investigated the cliff collapse problem by means of the Two-Fluid-Model (TFM), where the rheological description of the second phase (sand) is governed by the Kinetic Theory of Granular Flows (KTGF) and additional closures from soil mechanics for dense (frictional) regions of the solid phase. Using ANSYS Fluent R17.2, we have studied the influence of the aspect ratio and scale of the initial cliff, the scale of the particle size, four different interstitial fluids (air, water, and two viscous but shear-thinning solutions), and the role of the initial condition (IC) of the solid volume fraction. The latter was evaluated by two different strategies: (1) Let solids settle to establish a compacted granular bed in dynamic equilibrium prior to allow the cliff to collapse and (2) simply patch the solid volume fraction into the computational domain at t = 0. While most of the simulations produced a final deposit featuring a slope, validation with experimentally obtained scaling laws from the literature was not comprehensively successful. The primary reason identified is that, at steady-state, for which a sloped deposit must exist, a thin layer at the top of the sediment bed remains flowing, yielding a scale-dependent disintegration of the cliff over longer periods of time which ultimately results in a flat bed. We suspect this phenomenon, hereafter termed top bed velocity defect, to be a consequence of the numerical solutions strategy of Fluent which may result in some momentum solid flux imbalance at top-bed regions where the gradient of the solids kinetic/collisional pressure is high. Comprehensive model tuning is required to yield a better physical representation of the IC. In addition, alternative closures for both solid frictional pressure and solid viscosity may be helpful to better replicate the experimental data. On the other hand, experimental spread and missing experimental data for the shear-thinning fluids requires more comprehensive experimental data for validation purposes. If the model in its current form is used for transport modeling of cuttings in wellbore flows, the velocity defect will lead to an unknown overestimation of the mass flux of solids. When it comes to the modeling of dune migration, the top bed velocity defect will likely cause disintegration of the dune over longer periods of time.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectCFDen_US
dc.subjectFrictionalen_US
dc.subjectKTGFen_US
dc.subjectTwo fluid modelen_US
dc.subjectCliff collapseen_US
dc.titleOn the validity of the two-fluid-KTGF approach for dense gravity-driven granular flows as implemented in ANSYS Fluent R17.2en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.source.pagenumber429-456en_US
dc.source.volume364en_US
dc.source.journalPowder Technologyen_US
dc.identifier.doi10.1016/j.powtec.2020.01.043
dc.identifier.cristin1840858
dc.relation.projectNorges forskningsråd: 228391en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal