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As a subproblem of solid transport in wellbores, we have investigated the cliff collapse problem bymeans of the
Two-Fluid-Model (TFM), where the rheological description of the second phase (sand) is governed by the Kinetic
Theory of Granular Flows (KTGF) and additional closures from soil mechanics for dense (frictional) regions of the
solid phase. Using ANSYS Fluent R17.2, we have studied the influence of the aspect ratio and scale of the initial cliff,
the scale of the particle size, four different interstitial fluids (air, water, and two viscous but shear-thinning solu-
tions), and the role of the initial condition (IC) of the solid volume fraction. The latter was evaluated by two differ-
ent strategies: (1) Let solids settle to establish a compacted granular bed in dynamic equilibrium prior to allow the
cliff to collapse and (2) simply patch the solid volume fraction into the computational domain at t= 0.
While most of the simulations produced a final deposit featuring a slope, validation with experimentally
obtained scaling laws from the literature was not comprehensively successful. The primary reason iden-
tified is that, at steady-state, for which a sloped deposit must exist, a thin layer at the top of the sedi-
ment bed remains flowing, yielding a scale-dependent disintegration of the cliff over longer periods
of time which ultimately results in a flat bed. We suspect this phenomenon, hereafter termed top bed
velocity defect, to be a consequence of the numerical solutions strategy of Fluent which may result in some
momentum solid flux imbalance at top-bed regions where the gradient of the solids kinetic/collisional
pressure is high.
Comprehensive model tuning is required to yield a better physical representation of the IC. In addition,
alternative closures for both solid frictional pressure and solid viscosity may be helpful to better repli-
cate the experimental data. On the other hand, experimental spread and missing experimental data for
the shear-thinning fluids requires more comprehensive experimental data for validation purposes.
If the model in its current form is used for transport modeling of cuttings in wellbore flows, the velocity defect
will lead to an unknown overestimation of themass flux of solids.When it comes to themodeling of dunemigra-
tion, the top bed velocity defectwill likely cause disintegration of the dune over longer periods of time.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Granular cliff collapse, i.e. the disintegration of a pile of granu-
lar material over time because of gravity, is an often-researched
problem because it represents the physics of landslides and it is
e; BC, Boundary Condition; CFD,
blem; DEM, Discrete Element
F, Kinetic Theory of Granular
Side; SPH, Smooth Particle
el; VR, Viscous regime.
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. This is an open access article under
a comparatively simple problem to study on a laboratory scale.
When it comes to modeling, it is the granular flow analog to the
dambreak problem in fluid mechanics. Our motivation, however,
is slightly different: we are concerned with wellbore flow model-
ing, where the transported solids may form a bed at the bottom of
the annular conduit. Depending on the local inclination of the
wellbore and on operational parameters (e.g. fluid throughput,
drill pipe rotation, and inclination), ripples and dunes and even
avalanches may occur. Due to the scale of the actual wellbore,
model validation is often difficult. Hence, we apply our modeling
approach, the Two-Fluid-Model (TFM) with closures from the Ki-
netic Theory of Granular Flows (KTGF) and additional closures
from soil mechanics (SM) to handle dense granular regions, to
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1 The parameter values of Lube et al. were determined with quartz sand (\rho_p
= 2600 kg/m£, d_p = {0.15, 1.5} mm and \alpha_repose = 29.5°. In addition, rice and
sugar were used. Concerning the nondimensional run-out length, there was no difference
between the different particles. However, the deposit height for the fine quarts sand (d_p
= 0.15 mm) is better described with \lambda_y = 1.1.

2 Note that in the scaling framework of both Lube et al. [3] and Bougouin and Lacaze [2],
yn= y/x0. Hence, to suit the scaling law definition as used in this study, these yn(a) scaling
laws of have to be divided by the aspect ratio awhich then yields the coefficients as given

Nomenclature

Greek symbols
α Volume fraction
_γ Shear rate, total shear measure
Δ Difference
η Apparent shear viscosity
κ Bulk viscosity
λ Parameter in Cross material function and cliff collapse

scaling law
μ Newtonian shear viscosity
ϕ Angle of internal friction
ρ Density
Θ Granular temperature

Latin symbols
a Aspect ratio
c Coefficient
d Diameter
D Rate of deformation tensor
e Coefficient of restitution
f Functional
f Force vector
g Radial distribution function
g Gravity
I Inertial number
I Identity tensor
k Granular conductivity
K Interphase exchange coefficient
n Parameter in Cross material function and cliff collapse

scaling law
p Pressure
r Square root of the fluid-solid density ratio
Re Reynolds number
St Stokes number
t Time
T Relaxation time
T Stress tensor
u Phase velocity
V Volume
w Width
x, y Spatial dimension

Indices
0 Zero, initial, t= 0, _γ→0
∞ Infinity, _γ→∞
c Collisional
Cr Cross
D Drag
f Fluid (if used as first index), Frictional (if used as second

index, e.g. s,f)
i, j Index
k Kinetic
mpd Maximum packing density of the model
n Non-dimensional
p Particle
s Solid
T Transposed
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the Cliff Collapse Problem (CCP), which constitutes an extreme
case of what might happen in a inclined wellbore in the absence
of flow and pipe rotation.
1.1. From cuttings transport modeling to the CCP

When decomposing cuttings transport in wellbores into smaller and
simpler cases, one retrieves the classic CCP. Here, a granular column
with an initial with x0, height y0 and solid volume fraction αs,0, as con-
ceptually depicted in Fig. 1, disintegrates under the influence of gravity
as soon as one of the side walls, here the Right Hand Side (RHS), is
removed.

At steady-state, the final shape features the final run-out length xf,
the final deposit height yf and an inclination angle in the order of the
angle of repose of the respective granularmaterial. A review of granular
flows in general and dam-break granularflows and the CCP in particular
was recently provided by Delannay et al. [1], who pointed out deficien-
cies of conventional modeling approaches and conclude that only very
limited modeling work is available which has actually addressed prob-
lems encompassing flows in which dense and dilute regions coexist.

1.2. Experimental work

TheCCP has been intensively researched throughout the years as it is
both a numerical test case as well as a real-world problem (e.g. land
slides, avalanches). While various specific scaling laws for xf and yf
have been suggested in the literature, some depending on the experi-
mental setup and/or interstitial fluid [2–7], a universal trend is a
power-law dependence on the aspect ratio a= y0/x0. Distinct behaviors
are found at small and large a, aswell as for different interstitial fluids. A
generic non-dimensional framework [1] for xf and yf is given as

xn; f ¼ λxanx ð1Þ

and

yn; f ¼ λyany−1 ð2Þ

respectively, where the dimensionless x-coordinate is defined as

xn ¼ x−x0
x0

ð3Þ

and the dimensionless y-coordinate is defined as

yn ¼ y
y0

ð4Þ

where the index 0 denotes the initial configuration at flow time t = 0.
The coefficients λimay account for granularmaterial properties and

experimental setups [3], and the exponents ni account for large aspect
ratio effects [3], and both may also account for the granular fluid flow
regime [2]. In addition, in case of interstitial liquids, λi and ni may also
account for the then relevant role of the initial solid volume fraction [2].

Various experimental studies have shown that in case of dry granu-
lar media the CCP scales predominantly with the initial aspect ratio
[1–3,6,8,9]. For instance, Lube et al. [3]1 determined for2

a b 1:8 : λx ¼ 1:6 & nx ¼ 1

a N 2:8 : λx ¼ 2:2 & nx ¼ 2
3

ð5Þ

for the scaling law (1) and for
in Eqs. (6) and (8)



Fig. 1. Conceptual sketch of the CCP with dimensions used in this study. Solid line rectangle filled with particles represents initial condition at t=0, dashed line represent a possible final
shape. Large black solid line rectangle represents the dimensions of the computational domain.
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a b 1:15 : λy ¼ 1 & ny ¼ 0

a N 1:15 : λy ¼ 1 & ny ¼ −
2
5

ð6Þ

for the scaling law (2), in contrast to Bougouin and Lacaze [2],3 who
recently established for the scaling law (1)

a b 2 : λx ¼ 2:7� 0:3 & nx ¼ 1
a N 2 : λx ¼ 3:7� 0:3 & nx ¼ 0:64� 0:02 ð7Þ

and for the scaling law (2)

a b 0:75 : λy ¼ 1 & ny ¼ 0
a N 0:75 : λy ¼ 0:80� 0:07 & ny ¼ −0:65� 0:04 ð8Þ

The CCPwith an interstitial liquid has been far less investigated. The
final run-out length and deposit height does not differ much from the
dry case [8]. However, the initial solid volume fraction arises as a rele-
vant parameter [10,11]. Rondon et al. [10] showed that the initial solid
volume fraction of the cliff (for instance αs, 0 = 0.55 corresponding to
a loose state as a result of plain sedimentation vs. αs, 0 = 0.60 corre-
sponding to a dense state as a result of enforced precompaction) is a
major parameter affecting the dynamics of the collapse. The loose con-
figurations collapse rapidly on time scales proportional to the initial
heights and result in elongated final deposits with a decreasing slope
for decreasing volume fractions. Dense configurations feature much
smaller dynamics on time scales that increase with increasing volume
fractions. For instance, for initially loose beds (αs= 0.55) of sand col-
lapsing in a fluid, the time to steady-state of the collapsing cliff is in
the order of 1 s, whereas for initially dense beds (αs= 0.60), it takes
about 30–40 s until the final state is reached [10]. The final slopes of
these deposits are approximately constant and equal to the material's
angle of repose. A physical explanation is that for the dense cliff to
flow the solids need too dilate first, which results in liquid flowing
into the cliff due to a negative pore pressure opposing the disintegra-
tion. By contrast, the loose column ejects liquid because of positive
pore pressure which enhances the disintegration of the cliff.

Recently, Bougouin and Lacaze [2] showed that collapses of a granu-
lar column and the corresponding flow regimes may be characterized
by a Stokes number in the form of

St ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5ρsΔρ gk kd3s

q
18η

ð9Þ
3 Bougouin and Lacaze used spherical glass beads with \rho_p = {2500, 2230} and d_p
≈ {1, 3} mm, respectively.
and the square root of the fluid-solid density ratio

r ¼
ffiffiffiffiffiffi
ρs

ρ f

s
ð10Þ

andmay be consequently categorized into one of the following granular
flow regimes:

• Free Fall Regime (FFR) for St ≫ 1 and r ≫ 1, typically the dry case,
where the ambient fluid has no effect on the collapse.

• Inertial Regime (IR) for St≫ 1 and r ≪ 1, where the individual grain
reaches its inertial limit velocity and gravity is balanced by fluid
drag force.

• Viscous Regime (VR) for St≪ 1, where the individual grain reaches its
Stokes limit velocity.

Furthermore, Bougouin and Lacaze [2] showed that the coefficients
given in Eq. (7) and (8) only apply to the FFR and the IR. The VR features
different coefficients instead. The coefficients for the VR run-out length
are

a b 2 : λx ¼ 1:5� 0:1 & nx ¼ 1
a N 2 : λx ¼ 1:9� 0:1 & nx ¼ 0:64� 0:02 ð11Þ

and for the deposit height

a b 0:75 : λy ¼ 1 & ny ¼ 0
a N 0:75 : λy ¼ 0:87� 0:03 & ny ¼ −0:52� 0:02 ð12Þ

1.3. Modeling work

Two major modeling approaches are typically utilized for the rheo-
logical description of the granular matter:

1. Simplifying the granular media to a single phase yet complex fluid, a
so-called η(I)-rheology, where the viscosity coefficient is a function
of the inertial number I ¼ 2 _γds=

ffiffiffiffiffiffiffiffiffiffi
p=ρs

p
and goes from a minimum

value for low I characterizing the quasi-static regime to an
asymptotical finite value for large values of I [1,12–16].

2. Using a Two-Fluid-Model framework and assuming additivity [17],
the solid stress tensor is decomposed into two contributions, the
first, namely Ts,k/c, based on the Kinetic Theory of Granular Flows
(KTGF) developed by Savage [18–20] handling the loose, i.e. the
collisional/kinetic regime1F4 (αs b αs,f) and the second, namely Ts,f,
utilizing closures from soil mechanics describing the dense regime
4 By some researchers referred to as inertial regime or viscous regime.
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(αs N αs,f)5, where frictional contacts dominate. Various closure laws
exist for the solid pressure ps,k/c [20] and solid viscosity ηs, k/c [20]
being mainly a function of the granular temperature θ and the solid
volume fraction αs. Some closures exist for the frictional pressure
ps,f [21,22] and frictional viscosity ηs,f [22,23] being a function of the
solid volume fraction αs and the magnitude of the solid shear rate
tensor _γs ¼ k _γsk as well as the solid pressure ps,.respectively.

The inertial number dependent rheology may be considered much
more general than the TFM-KTGF-SM framework. The former accounts
for the transition between frictional and collisional regimes in a contin-
uous and physical manner (It can be correlated to physical parameters
like particle diameter, inter-particle friction and particle stiffness)
while the latter is simply based on a discrete solid volume fraction
threshold. Recently, inertial number dependent rheology formulations
have been successfully applied to the TFM approach [24,25]. However,
such models have not yet found its way into commercial codes.

CFD cuttings transport studies typically employ the second ap-
proach. For the sake of completeness, relevant alternative approaches
to describe granular flows are Discrete Element Modeling (DEM), e.g.
[9,26], where individual particles or parcels are tracked in a Lagrangian
manner in addition to the continuummodeling of the carrier phase and
Smooth Particle Hydrodynamics (SPH) [27]. DEMmethods are however
severely limited by affordable and available computational power for
larger systems and SPH has not yet gainedwide application in industrial
environments yet.

The inclusion of the frictional regime is particularly relevant when
heap building is of relevance [28]. For instance, when modeling the
hour glass problem, heap building in the lower chamber does not
occur if the solid stress tensor does not include Tf with a solid viscosity
material function accounting for plasticity [28]. A widely used model
is the one of Schaeffer [23], which is based on a Mohr-Coulomb yield
criteria and produces large frictional viscosities in case of vanishing
shear rates and high solid pressures such that flow is effectively blocked.

For small aspect ratios, the frictional viscosity is dominating the dy-
namics [29], while for larger aspect ratios, where inertia and velocity
magnitudes become much larger, the inclusion of either a η(I)-
description [15] or a KTGF-description [30] appears required to account
for the different dynamics.

Savage et al. [31] recently showed that a mixture model approach
with the inclusion of the Schaeffer [23] frictional viscosity model is a
suitable alternative to model the collapse of granular media for both
air and water as interstitial fluid. However, for three-dimensional cut-
tings transport modeling, the mixture model is not as suited as the
TFM because of very heterogeneous solid concentrations.
1.4. Scope and structure

Recent studies [32,33] question the applicability of the classical
Schaeffer frictional viscosity model [23] and found that different yield
criteria and frictional viscosity closures are required. In contrast, the in-
clusion of these models is required to properly describe dense granular
shearing flows with the KTGF [30].To evaluate the validity of the pre-
scribed modeling approach for cuttings transport problems, where
dense sediment bedsmay form at the lowerwall of the annularflowdo-
main,we investigate the cliff collapse problem for granularmedia (sand
in air, water and two shear-thinning aqueous polymer solutions) on
nine different spatial scales (respective combinations of three domain
sizes and three particle diameters) for different initial aspect ratios
and solid volume fractions of the cliff.

The important question is whether in the absence of external flow,
i.e. the drilling fluid flushing the annulus, the solid phase behaves like
a true granular matter under the pure influence of gravity and
5 By some researchers referred to as plastic regime or frictional regime.
eventually stops flowing by building a static bed, satisfying a prescribed
angle of repose.

We first provide a description of the physical model, followed by all
relevant information on the various cases investigated and the CFD
setup and numerical method. We then present all results, where we
compare the numerical findings with the aforementioned scaling laws
of Lube et al. [3] and Bougouin and Lacaze [2]. In the following discus-
sion,we focus on the observed differences between scaling laws andnu-
merical results as well as the role of the initial solid volume fraction in
case of liquid interstitial fluids and the computational procedure
utilized.

2. Materials & methods

2.1. Physical model

In the TFM, both the fluid (index f) and the solid (index s) phase are
treated as a continuum and assumed both isothermal and
incompressible3F6. Hence, for an arbitrary volume element Vi, the
phase volume fractions αi must sum to one, i.e.

Vi ¼
Z
V

αidV ∧
X
i

αi ¼ 1 ∧ i∈ f ; sf g ð13Þ

and mass conservation is given by

∂
∂t

αiρið Þ þ ∇ � αiρiuið Þ ¼ 0 ð14Þ

where the index i ∈ {f,s} and ρi and ui denote the intrinsic volume aver-
ages of density and velocity, respectively.

Both phases obey a general form of the Cauchy momentum trans-
port equation of the form, which for the fluid and solid phase respec-
tively reads

∂
∂t

α fρ fu f

� �
þ ∇ � α fρ fu fu f

� �
¼ −α f∇pf þ ∇ � α fτ f

� �
þ α fρ f g−

1
V

X
p∈V

f j ð15Þ

∂
∂t

αsρsusð Þ þ ∇ � αsρsususð Þ ¼ −α f∇pf−∇ps þ ∇ � τs þ αsρsg

þ 1
V

X
p∈V

f j ð16Þ

where τi is the phasic deviatoric stress tensor comprising some consti-
tutive equation, here a compressible Generalized Newtonian Fluid
(GNF) and phase-dependent material functions for the shear and bulk
viscosities, ηi and κi,

τi ¼ 2ηiDi þ κ i−
2
3
ηi

� �
∇ � uið ÞI ð17Þ

where Di is the symmetric part of the fluid or solid velocity gradient
(also known as the rate of deformation tensor, or alternatively the rate
of strain tensor)

Di ¼
1
2

∇ui þ ∇ui
T� � ð18Þ

and the shear rate _γi is the magnitude of the rate of deformation tensor
Di,
6 Note that the solid phase may feature some closure law which accounts for the com-
pressibility of granular matter.



Table 1
Overview of solid phase state equations and material functions used to model the kinetic/collisional (index k/c) and frictional (index f) regimes.

Regime Quantity Closure law Source

Kinetic/collisional ( j = k/c) Pressure ps;k=c ¼ αsρsΘs þ 2αs
2ρsΘs

�
1þ ess

�
g0;ss (31) [20]

Shear viscosity
(collisional) ηs;c ¼

4
5
αs

2ρsdsg0;ssð1þ essÞ
�
Θs

π

�1
2

(32)
[20]

Shear viscosity
(kinetic) ηs;k ¼

10ρsds
ffiffiffiffiffiffiffiffi
Θsπ

p

96ð1þ essÞg0;ss

�
1þ 4

5
αs

�
1þ ess

�
g0;ss

�1
2

(33)
[34]

Bulk viscosity
κs;c=k ¼

4
3
αs

2ρsdsg0;ssð1þ essÞ
�
Θs

π

�1
2

(34)
[20]

Frictional ( j = f) Pressure
ps; f ¼ 0:05

ðαs−αs; f Þ2
ðαs;mpd−αsÞ5

(35)
[21]

Shear viscosity
ηs; f ¼

ps sinϕsffiffiffi
2

p
kDsk

(36)
[23]

Bulk viscosity n/a n/a

7 In the literature, these regimes are alternatively known as the inertial or viscous re-
gime and the plastic or frictional regime, respectively.
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_γi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Di : Di

p
ð19Þ

The closures for the granular viscosities are provided in Section 2.3
and the rheological closure of the fluid is given in Section 2.2.

The last term in Eqs. (15) and (16) represents themomentum trans-
fer of one phase to the other, where the force sum is to be taken over all
particles in the volumeV.We here only consider the drag force fD, which
is typically modeled based on the relative velocity

ur ¼ us−u f ð20Þ

as

1
V

X
p∈V

f j ¼ Kur ð21Þ

where the interphase exchange coefficient K is generically expressed as

K ¼ αsρs f
Ts

ð22Þ

with the Stokes relaxation time Ts written as

Ts ¼ ρsds
2

18η f
ð23Þ

The functional f in Eq. (22) includes specific a drag function cd(Rep)
and depends on the particular model utilized. We use the formulation
of Gidaspow [34], which is a combination of the Wen and Yu model
[35] and the Ergun equation [36], where the interphase exchange coef-
ficient K is given as

αs ≤ 0:2 : K ¼ cD
3αsρ f urk k
4α f

0:65ds

αs N 0:2 : K ¼ 150
αs

2η f

α f ds
2 þ 1:75

αsρ f urk k
ds

ð24Þ

where the coefficient of drag is defined as

cD ¼ 24
α f Rep

1þ 0:15 α f Rep
� �0:687� �

ð25Þ

and the particle Reynolds number is defined as

Rep ¼ ρ f ds urk k
η f

ð26Þ
2.2. Fluid rheological properties

We here limit the rheological description of a drilling fluid model
system to purely shear-thinning behavior. Often, experimental cuttings
transport studies utilize polymeric solutions because these are easy to
produce, non-hazardous and translucent. The shear viscosity of poly-
meric solutions is well-characterized by the Cross (Cr) [37] material
function

η f ¼
μ0−μ∞

1þ λCr _γ f

� �nCr þ μ∞ ð27Þ

because this represents the shear viscosity data much better for a wider
shear rate range since it accounts for Newtonian viscosities at both low
and high shear rates [38]. Here, μ0 is the zero-shear viscosity, μ∞ is the
infinite-shear viscosity, λCr is the Cross time constant and nCr is the
Cross exponent. Moreover, this model collapses to the simple Newto-
nian case for e.g. μ0 = λCr = nCr = 0.

The fluid phase is assumed incompressible and consequently the
bulk viscosity in Eq. (17) becomes zero.

2.3. Solid rheological properties

As mentioned in the introduction, the KTGF framework developed
by Savage [18–20] is used to describe the loose, i.e. the collisional/ki-
netic regime4F7 (solid volume fractionαs bαs, f=0.55) and additionally
closures from soil mechanics are applied to describe the dense regime
(αs ≥ αs, f) of the solids.

Assuming additivity [17], the entire solid stress tensor, namely Eq.
(17) with index s and including the solid pressure ps, is then given by
the sum of collisional/kinetic and frictional components

Ts ¼ Ts;k=c þ Ts; f

¼
X

j∈ k=c; ff g
−ps; j þ κs; j−

2
3
ηs; j

� �
∇ � us

� �
Iþ 2ηs; jDs

	 

ð28Þ

Even though the general stencil is that of a compressible Newtonian
fluid, namely Eq. (17), the rheological properties of the solid phase
given by the respective material functions as summarized in Table 1
are highly non-linear. They depend on a variety of parameters and var-
iables such as the granular temperature Θs as a measure for the degree
of random particle motion (granular fluctuations due to individual par-
ticle collisions), for which the general transport equation reads [39].



Table 2
Fluid densities and rheological model coefficients at room temperature (21 °C) and atmo-
spheric pressure (1.01 bar).

Fluid ρf [kg/m3] Cross model coefficients

μ0 [Pa∙s] μ∞ [Pa∙s] λCr [1/s] nCr [−]

Air 1.225∙100 0 1.79∙10−5 0 0
H2O 9.980∙102 0 1.002∙10−3 0 0
PAC2 1.000∙103 7.210∙10−2 1.002∙10−3 1.090∙10−2 0.586
PAC4 1.000∙103 2.140∙10−1 1.002∙10−3 2.610∙10−2 0.608
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3
2

∂
∂t

αsρsΘsð Þ þ ∇ � αsρsusΘsð Þ
	 


¼ Ts : ∇us þ ∇ � kΘs∇Θs
� �

−DΘs þ Kfs

ð29Þ

where kΘ s
is the granular conductivity [e.g. 21] and the two final terms

in Eq. (29) are the collisional dissipation of energy [20] and the inter-
phase exchange between the particle fluctuations and the fluid phase
[34].The granular temperature Θs is defined as

Θs ¼ 1
3

us;i
0us;i

0� � ð30Þ

where us,i′ is the i-th fluctuating component of the solids velocity and
the bracket represents an ensemble average of the fluctuating velocities
of all particles within a finite volume [39].

Eq. (29) is simplified to an algebraic equation by neglecting the con-
vection and diffusion terms—an often used assumption in dense, slow
moving fluidized beds where the local generation and dissipation of
granular temperature far outweigh the transport by convection and
diffusion.

In Eqs. (31)–(34), ess is the coefficient of restitution for particle colli-
sions and

g0;ss ¼ 1−
αs

αs; max

� �1
3

2
4

3
5
−1

ð37Þ

is the radial distribution function accounting for the probability of parti-
cle collisions, which has been used frequently in the history of granular
flows [20,40–42] in the form presented in Eq. (37).
Cl
iff

 sc
al

e 
0

, 
0

a

3

2

1

0.54
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Fig. 2.Different cases investigated. For each combination of aspect ratio a and initial volume frac
phase indicated.
2.4. Test matrix

We investigated the influence of the aspect ratio and scale of the ini-
tial cliff (a= y0/x0= 1, 2, 3, and x0= 0.1, 1,10m, respectively), the scale
of the particle size (ds = 10−4, 10−3, 10−2 m), four different interstitial
fluids (air, water, and two viscous but shear-thinning polymer solutions,
namely Polyanionic Cellulose with concentrations of 2 g/L and 4 g/L,
hereafter termed PAC2 and PAC4, respectively, allmaterial data provided
in Table 2), and the role of the initial conditions (ICs) such as solid vol-
ume fraction αs, 0 and solid pressure fields. Fig. 2 provides the logical re-
lationship of the investigated parameters for the example of a = 3.

By letting the solids settle and establish a granular bed in a pre-
simulation, smooth fields for αs, 0 (average αs, 0 ≈ 0.59) and ps as well
as other quantities are obtained which allow for a smooth simulation
startwhen the RHSwall of the cliff is being removed instantly. The alter-
native is to simply patch the respective αs, 0 into the computational do-
main, which we have also investigated for a αs, 0 = {0.55, 0.60}, as
depicted in Fig. 2.

For each IC, we investigated the role of four different interstitial
fluids (see Table 2) and nine different cases. The latter are spatial com-
binations of the particle diameter range and the initial cliff scale, as pro-
vided in Table 3 and depicted in Fig. 2.

In all cases, the solid phase was replicating sand, represented by
mono-sized spherical particles with a density ρs = 2560 kg/m3. In the
frictional closures, namely Eqs. (35) and (36), the angle of internal fric-
tion ϕs was assumed to be 45° in order to yield an angle of repose of the
final deposit of approximately 25°…30° [28], the coefficient of restitu-
tion for particle collisions ewas taken as 0.9, themaximumpackingden-
sity of the solid phase αs,mpd was defined as 0.63 and the solid volume
fraction threshold for the dense regime, where the frictional model ac-
tivates, was αs, f = 0.50.

2.5. CFD setup & numerics

For the three cliff scales investigated, three structured quadrilat-
eral 2D meshes with an initial grid size Δx = 0.002, 0.02, 0.2 m
were generated. In order to precisely track the evolution of the col-
lapsing cliff, adaptive meshing was used throughout the simulations
to refine the mesh based on the magnitude of the solid volume
fraction gradient ‖∇αs‖ every fifth timestep. Depending on the
fluid type, simulations were run for 4 s (air, Δt = 10−4 s) or 100 s
(all liquids, Δt = 10−3 s) to obtain the final solution.
0.62 0.64
0.60

0.58

Ini�al solid volume frac�on 
simply patched into domain

Ini�al solid volume frac�on obtained by pre-
simula�ons of se�ling granular columns

tionαs, 0, the nine spatial combinations provided in Table 3where simulated for each fluid



Table 3
Investigated combinations of spatial scales for initial cliff and particle. Thematrix given by Table 3 is the framework of eachof the individualmaterials for a given aspect ratio as depicted by
Fig. 2. The symbols indicated are respectively used in all remaining figures of the paper (unless indicated otherwise).

Particle scale

Small (ds = 0.0001 m) Medium (ds = 0.001 m) Large (ds = 0.01 m)

Cliff scale Small (w = 0.1 m, y0 = 0.04 m, Δx = 0.002 m) 1 / ○ 2 / ○ 3 / ○
Medium (w = 1 m, h = 0.4 m, Δx = 0.02 m) 4 / ◊ 5 / ◊ 6 / ◊
Large (w = 10 m, h = 4 m, Δx = 0.2 m) 7 / □ 8 / □ 9 / □
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We used ANSYS Fluent R17.2, a commercial Finite Volume code
and hereafter simply termed Fluent, to solve the physical model.
The flow fields were solved using the Phase-Coupled SIMPLE
scheme [43] in a segregated manner (but coupled by phases) with
conservative underrelaxation factors, as conceptually shown in
Fig. 3.

A shared pressure correction equation is solved, based on total con-
tinuity. Fluent is based on a collocated grid and uses a “Rhie and Chow
type of scheme to calculate volume fluxes” [45,46]. The solid volume
fraction is solved for the secondary phase and the primary phase value
is then obtained from the constraint (13). After solving the granular
temperature Eq. (29), the solid pressures (31) and (35) are obtained
from the solid volume fractions.

The QUICK scheme [44] was applied for spatial discretization and
the Green-Gauss node-based gradient scheme to evaluate all gradi-
ents. The term ∇ps in the momentum equation of the granular
phase, namely Eq. (15) with index s in combination with Eq. (28),
is numerically resolved by ∇ps≈ ∂ps/∂αs∇ αs. The time discretization
was implicit second order. The algebraic multigrid method with the
Gauss-Seidel solver was used to solve the system of discretized
equation.
3. Results

First, we provide amapping of our investigated cases on the flow re-
gimemap of Bougouin and Lacaze [2] because the scaling laws to use for
model validation depend on the granular flow regime. Our numerical
results are subsequently presented in the following manner: For each
of the first phase fluids and initial solid volume fractions investigated,
we depict the numerical results in the form of the dimensionless final
run-out length and final deposit height per aspect ratio a together
with the scaling laws of Lube et al. [3] and Bougouin and Lacaze [2].
Fig. 3. Computational sequences of ANSYS
Examples of the dimensional final shapes of the deposit, together with
the initial shapes and snapshots of the evolution of the cliff disintegra-
tion using thematrix framework given in Table 3 and Fig. 2 are provided
in Appendix A.

Both the dimensional final run-out length and the dimensional final
deposit height were determined based on the maximum of the volume
fraction gradient, with restrictions imposed on the y- and x-coordinate,
respectively:

xf ¼ x max ∇αs x; y ≥ dsð Þk kð Þ
yf ¼ y max ∇αs Δx; yð Þk kð Þ ð38Þ

3.1. Granular flow regimes

By expressing our design space in terms of the quantities defining
the granular flow regime of Bougouin and Lacaze [2], namely eqs.
(9) and (10), we can identify the respective granular flow regimes for
the individual cases as depicted on Fig. 4.

The spatial scale of the cliff is not a parameter in the space of
Bougouin and Lacaze [2], hence the different spatial scales of the cliff
as investigated in this study collapse on one single point, respectively.

The granular flow regimemapping shows that when it comes to the
scaling laws of Bougouin and Lacaze [2], the correct scaling benchmark
for the air numerical results are given by the coefficients (7) and (8). For
the H2O and PAC2 cases, the coefficients (7) and (8) aswell as (11) and
(12) apply, however, depending on the particle diameter. The PAC4
cases are entirely covered by the coefficients (11) and (12).

3.2. Sand in air

Fig. 5 provides the dimensionless final run-out length and final de-
posit height for αs, 0 ≈ 0.59, i.e. where the IC conditions of the
Fluent R17.2, adapted from [45,46].
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Fig. 5. Final non-dimensional run-out xn,f (left) and height yn,f (right) for sand in air with
αs, 0 ≈ 0.59. The data points correspond to the dimensional xf and yf values depicted in
A.1.1. Grey solid lines represent the scaling of Lube et al. [3] with dashed lines indicating
± 10%, black solid lines the scaling of Bougouin and Lacaze [2] for the FFR with dashed
lines indicating uncertainty given in [2].

Fig. 4.Different cases investigatedmapped ongranularfluidflowregimemap (square root of grain density ratio r vs. Stokes number St) of Bougouin and Lacaze [2]. Colors indicatefluids as
defined in Fig. 2 (blue circled=air, bluefilled=H2O) and sizes of data points represent the three different particle diameters. Note that thedifferent symbols as defined in Table 3 fall onto
one point because the spatial size of the cliff is not part of the r-St-space of Bougouin and Lacaze [2].
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simulation where obtained by letting a pile of sand settle in air in order
to obtain steady and smooth fields for all quantities. Figs. 6 and 7
depict the dimensionless final run-out length and final deposit height
for αs, 0 = 0.55 and αs, 0 = 0.60, respectively. Here, the IC were given
by the constantαs, 0 only, whichwas simply patched into the computa-
tional domain.

Most of the numerical run-out length data falls between the two
scaling curves of Lube et al. [3] and Bougouin and Lacaze [2]. Exceptions
are for instance the small particle diameters for the intermediate and
large cliff scale for a = 1 in case of the patched solid volume fraction
αs, 0 = 0.55 (Fig. 6 left) aswell as the intermediate and large particle di-
ameters for the large cliff scale for a = 2 in case of the pre-simulated
solid volume fraction αs, 0 ≈ 0.5 (Fig. 5 left).

Both exceptions are represented in the respective deposit height
plots, were in case of the latter the data points fall above (Fig. 5 right)
and in case of the former the data points fall below the scaling laws
(Fig. 6 right).The deposit height data for the large cliff scale cases fall
consistently on top of the scaling laws, i.e. the numerically obtained de-
posit height is always larger than the experimentally obtained as repre-
sented by the scaling laws.

For the non-dimensional run-out length xn, f, some data points coin-
cide at the maximum value. This is the end of the computational where
solids where stopped by the boundary wall.

On a more general note, for a particular aspect ratio all results fea-
ture a spread in the order of up to ± ≈ 50% for the run-out distances
and ± ≈ 50% for the deposit heights.

3.3. Sand in water

Fig. 8 provides the dimensionless final run-out length and final de-
posit height for αs, 0 ≈ 0.59, i.e. where the IC conditions of the simula-
tion where obtained by letting a pile of sand settle in air in order to
obtain steady and smooth fields for all quantities. Figs. 9 and 10 depict
the dimensionless final run-out length and final deposit height for
αs, 0 = 0.55 and αs, 0 = 0.60, respectively. Here, the IC were given by
the constant αs, 0 only, which was simply patched into the computa-
tional domain.
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Fig. 6. Final non-dimensional run-out xn, f (left) and height yn, f (right) for sand in air with
αs, 0 = 0.55. The data points correspond to the dimensional xf and yf values depicted in
A.2.1. For further description see caption of Fig. 5.

8 See https://www.youtube.com/playlist?list=PLfeJTTWUNqAXyvNppPBEMm5_
I531YQV2p for some PAC2 CCP results and https://www.youtube.com/playlist?list=
PLfeJTTWUNqAUFGIO9Gz-wFzHJxmTg1-cm for some PAC4 CCP results.

9 Here steady-state is a relative termas the discussionwill show. For now, it refers to the
final state as obtained in the simulations at maximum flow time.More generally, andwith
respect to real world experiments, it is a state, where the deposit flow has completely
stopped and the final shape is a deposit slope.
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In contrast to the air results, most of the numerical run-out length
data is much more scattered. However, the majority falls between the
scaling curves for the VR and the IR of Bougouin and Lacaze [2]. Excep-
tions are for instance the small particle diameters for a={1, 2} in case of
the patched solid volume fractionαs, 0 = 0.55 (Fig. 9 left) as well as the
small particle diameters in case of the pre-simulated solid volume frac-
tion αs, 0 ≈ 0.59 (Fig. 8 left).

The numerical results for the deposit height are much less scattered
than the run-out length results, except for a = 1, where the small par-
ticle diameter data is only about 25% of the scaling lawmagnitude. Con-
sistently, for allαs, 0, the large particle diameter cases fall above, and the
small particle diameter cases fall below the scaling laws. Furthermore,
the large cliff scale (represented by squared boxes) produces the largest
deposit heights, while the intermediate and small cliff scales (repre-
sented by diamonds and circles, respectively) produce smaller deposit
heights and lie close together.

The corresponding dimensional results show that for some combi-
nations, e.g. αs, 0 ≈ 0.59 and a = 2, cases 1, 4, 7, 8 (Fig. A.11), the cliff
has entirely disintegrated and the steady-state is a flat sediment bed.
In some other cases, e.g.αs, 0 ≈ 0.59 and a=3, case 7 (Fig. A.12), it ap-
pears as if the simulation timewas to short and no steady-state has been
reached yet. For these two phenomena, our implementation of Eq. (38)
has difficulties capturing the final run-out length correctly, as may be
seen from e.g. αs, 0 ≈ 0.59 and a = 2, case 4 (Fig. A.12).

While the scaling laws state that the VR run-out lengths are shorter
than the IR ones, this is not represented by the numerical data. As
depicted on Fig. 4, the intermediate and large particle diameters cases
fall into the IR and the small ones into the viscous regime. However,
the order of the run-out length depicted on Figs. 8–10 is vice-versa in
most cases when compared to the respective scaling laws.

The same applies to the deposit heights, where small diameters al-
most consistently feature the smallest deposit heights. However, as op-
posed to the run-out lengths the virtual difference between the deposit
height scaling laws for the IR and VR is negligible.

3.4. Sand in PAC

For PAC, the same observations can be made as for the previously
discussed water cases. However, the scatter of the data is worse.
Hence, we only briefly summarize the major points of the PAC results8:

Many of the PAC2 results also fall between the two scaling laws for
the run-out length. The large particle diameter cases produce deposit
heights larger than what the scaling law predicts, and the order of the
numerical results does not reflect the order of the flow regime depen-
dent scaling laws.

An entirely leveled-out sediment bed also occurs for the small parti-
cle diameter cases. The not-occurred disintegration of the cliff occurs for
almost the same cases.

3.5. Initial conditions in case of αs, 0 ≈ 0.59

For all the cases αs, 0 ≈ 0.59, i.e. where the IC conditions of the sim-
ulation where obtained by letting a pile of sand settle in the respective
fluid in order to obtain steady and smooth fields for all quantities, the
obtained fields showed a very inconsistent picture when it comes to
smoothness.

For instance, in cases of the liquids where the cliff collapsed entirely
and eventually yielded a horizontal deposit, initial conditions obtained
by settling solids in a granular column do not feature a smooth frictional
viscosity field. Fig. 11 depicts contour plots of the frictional viscosity,
granular pressure and granular temperature at t = 4 s for a = 2 and
case 1.

While the latter two appear smooth, the frictional viscosity shows
regions of comparatively low viscosities in the lower center part and
walls of the granular column and especially at the top of the bed.

3.6. Non-zero velocity at top of sediment bed

For all cases investigated, including the pre-simulations to obtain IC
in case of αs, 0 ≈ 0.59, the top-cells of the steady-state5F9 sediment bed
features a non-zero solid velocity, regardless of how long simulations
are ran. Zooming in on the near-bed region of a pre-simulation as
depicted in Fig. 12, it becomes clear that some of the cells feature a pos-
itive vertical solid velocity.

These are corelated with large changes of the kinetic/collisional solid
pressure ps, k/c, as shown in Fig. 12 (right) or more in Fig. B.7 in Appendix
B,which shows the y-component of the gradient of thekinetic/collisional
solid pressure ps, k/c displayed in Fig. 12 (right).

A more comprehensive set of field plots covering all relevant quan-
tities is provided in Appendix B.

4. Discussion

At first glance, the numerical results appear to not scale well with
the scaling laws of Lube et al. [3] and Bougouin and Lacaze [2]. In the fol-
lowing, wewill first discuss the issue of non-zero velocities at the top of
the deposit bed, which overshadows the results, and provide potential

https://www.youtube.com/playlist?list=PLfeJTTWUNqAXyvNppPBEMm5_I531YQV2p
https://www.youtube.com/playlist?list=PLfeJTTWUNqAXyvNppPBEMm5_I531YQV2p
https://www.youtube.com/playlist?list=PLfeJTTWUNqAUFGIO9Gz-wFzHJxmTg1-cm
https://www.youtube.com/playlist?list=PLfeJTTWUNqAUFGIO9Gz-wFzHJxmTg1-cm
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Fig. 7. Final non-dimensional run-out xn, f (left) and height yn, f (right) for sand in air with αs, 0=0.60. The data points correspond to the dimensional xf and yf values depicted in A.3.1. For further
description see caption of Fig. 5.
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explanations linked to the computational procedure. After briefly focus-
ing on the relevance of the utilized closures laws for the solid stress ten-
sor, we discuss the numerical results with respect to the scaling laws of
Lube et al. [3] and Bougouin and Lacaze [2]. Finally, we comment on the
applicability of the employed modeling approach for hydraulic convey-
ing applications such as cuttings transport in wellbores and dune
migration.

4.1. Non-zero velocity at top of bed

Because of the non-zero velocity in the grid cells at the top of the de-
posit bed, the entire top-layer of the granular bed remains in a—in the
framework of the TFM—low-viscosity-like state and thus keeps flowing
over long periods of time. Hence, the non-zero velocity in the grid cells
close to the top of the deposit bed is affecting the final run-out length
and deposit height because solids are continuously redispersed into
the fluid layer on top of the sediment bed and settle back down. The
top-layer of the sediment bed is a region of high shear and thus the fric-
tional viscosity is very low leading to the top layer of the sediment bed
remaining in a low-viscosity-like state, regardless of the total simulation
time. In case of the cliff collapse problem, this leads to a small but con-
tinuous downslope flow of sediment, which over longer time scales fur-
ther reduces the deposit height and consequently increases the run-out
length. It is important to realize that this hereafter called top bed velocity
defect not only avoids a steady-state (The system does not really reach a
true steady-state as the top layer of the granular bed remains in a dy-
namic state) but also affects the dynamics of the granular collapse by
a small degree.

The reason for this positive solid velocity component as shown
in Fig. 12 is the internal switching of Fluent when it comes to the
computation of the solid stress tensor, namely Eq. (28): For cells
where αs b αs,f=0.5, only the kinetic/collisional part Ts, k/c, is computed
and the frictional part Ts,f is zero, i.e., the solid phase in these cells is not
subject to the frictional models as given by eqs. (35) and (36), and is
only governed by the KTGF. However, the non-consideration of the fric-
tional viscosity ηs,f leads to very low values of the solid viscosity ηs and
thus results in a liquid-like state of the solids phase. Apparently, in
these cells the solid pressure gradient ∇ps,k/c (which is determined
based on Eq. (31) and not by pressure-velocity coupling) is then large
enough to overcome the effect of gravity and provide enough momen-
tum to lift the solids.

In case of an inclined bed, for instance the states of the cliff collapse
system after collapse andwhen reaching a first quasi steady statewhere
the deposit shape features an angle of repose, αs in the top layer cells
may have any numerical value between 0 and αs,mpd because the cell
is not necessarily entirely filled with the dense bed. While this is
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Fig. 8. Final non-dimensional run-out xn, f (left) and height yn, f (right) for sand in water
with αs, 0 ≈ 0.59. The data points correspond to the dimensional xf and yf values
depicted in A.1.2. Grey solid lines represent the scaling of Bougouin and Lacaze [2] for
the VR and black solid lines the scaling of Bougouin and Lacaze [2] for the IR, with
dashed lines indicating uncertainty given in [2], respectively.
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Fig. 9. Final non-dimensional run-out xn, f (left) and height yn, f (right) for sand in water
with αs, 0 = 0.55. The data points correspond to the dimensional xf and yf values
depicted in A.2.2. For further description see caption of Fig. 8.
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perfectly representing the current shape of the deposit for the current
point in time, the numerical values lead to a granular rheological behav-
ior entirely governed by the KTGF because the frictional closures are
only activated for αs N αs, fric = 0.5. Hence this top layer sees some
self-induced flow due to the KTGF-governed cells.

4.2. Computational procedure

In order to better understand the described top bed velocity defect
phenomena, we tried alternative numerical approaches such as implicit
and explicit volume fraction treatment and the coupled (including
coupled with volume fractions) solving approach. However, the same
top bed velocity defect occurred. Letting the solver compute two volume
fractions instead of exploiting constraint (13) led to divergence.
Disactivating the KTGF state equation for the solid pressure, i.e. Eq.
(31), led to a significant reduction of the top bed velocity defect. The
granular temperature decreased significantly to very low levels.

Therefore, our hypothesis is that the observed phenomena is due
to a checker-board-like issue arising in the multiphase pressure-
velocity-coupling (PVC) concept employed by Fluent on a collocated
grid which does not fully account for the KTGF solid pressure. While
details of the “Rhie and Chow type of scheme to calculate volume
fluxes” are not disclosed [45,46], it appears that volume fractions are
held constant and the shared pressure is used as a basis. However,
the Rhie and Chow interpolation procedure [47] used to compute
the normal flux velocity components on the cell faces is known to
produce collocated velocities under certain circumstances e.g. the
presence of strong body forces such as when explicit solid pressure
or gravity become strong [48]. In the top-layer region where the top
bed velocity defect occurs, the solid pressures (31) and (35), which
act as source term in the momentum equations, are strongly depen-
dent on the solid volume fraction and hence should be considered in
the pressure corrections step [48].

In earlier versions of Fluent, a second pressure correction equation
appears to have been solved for the solid pressure [28,49]. In that
case, the introduction of the additional state equations ps = ps,c/k
(αs,…) + ps,f(αs,…) results in an overdetermined system [28].
Obtaining αs from ps instead is one way to remedy this problem [28]
and led to the Compressible Disperse Phase (CDP) method, which was
effectively applied to simulate the hour glass problem without any top
bed velocity defect phenomena and staple slopes of granular heaps
[28]. Later, it was unsuccessfully attempted to implement the CDP
method using a co-located mesh (A collocated mesh lead to negative
pressures for some solid volume fractions, while a staggered arrange-
ment ensured positivity for all solid fractions) [50].

More recently, Passalacqua and Fox [51] and Venier et al. [52] devel-
oped numerical approaches to handle granular flows for the open-
source CFD code OpenFoam, where the particle pressure contribution
to the solid flux is considered and two phasic pressure correction equa-
tions are solved. Both successfully employed a settling bed of solids as
test case, however, only solid volume fraction and no velocity plots
were disclosed.

An alternative explanation for the observed phenomena is the con-
cept of numerical storms due to unbalanced numerical schemes [53].
Well-balanced here refers to the property of conserving the
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Fig. 10. Final non-dimensional run-out xn, f (left) and height yn, f (right) for sand in water
withαs, 0 = 0.60. The data points correspond to the dimensional xf and yf values depicted
in A.3.2. For further description see caption of Fig. 8.

440 A. Busch, S.T. Johansen / Powder Technology 364 (2020) 429–456
fundamental balance of hydrostatic pressure and gravitational accelera-
tion down a slope at steady-state at a discrete level [53]. If this is not the
case, it can be shown that for the shallow-water equations, a lake at rest
will feature spurious oscillations of the water surface [53]. A much finer
Fig. 11. Result of pre-simulation (t = 4 s for air, a = 2, case 1), from left t
grid will help tominimize the numerical artefacts andmay correspond-
ingly be beneficial in reducing the order ofmagnitude of the velocity de-
fect seen in our simulations.

4.3. Relevance of solid closure laws

The form of the stress tensor, namely Eq. (28), in combination
with the closure law for viscosity, namely Eq. (36), must allow a
quasi-static solution, where the fluid is so highly viscous that it
does not flow with respect to our time scales 1..0.100 s. For
vanishing shear rates in the frictional regime, a Bingham-type
flow behavior is obtained due to the yield feature inherent in Eq.
(36). For instance, for the thin layer flow at the top of the sedi-
ment, us becomes smaller with a decreasing bed slope and thus
also the shear rate and the stress become small. However, the vis-
cosity ηf is based on the magnitude of the deformation rate tensor
D in the denominator whereas a particular stress component of
the stress tensor T is a direct function of the corresponding com-
ponent of D. Now, the magnitude of D is always larger than the
magnitude of the individual components of D, which eventually
should lead to the cut-off viscosity (default cut-off value 105 Pa∙s
in Fluent) and to the above mentioned quasi-static state.

Another relevant factor contributing to the observed flowing state of
the deposit top layer may be the combination of frictional viscosity and
frictional pressure models describing the solid phase in dense regions.
Venier et al. [52] showed that the application of the Schaeffer frictional
model [23] in combination with the solid frictional pressure formulation
of Syamlal et al. [22] producesmuchhigher levels of solid volume fraction
in the region just below the sediment top-layer, with a very sharp drop at
the top of the sediment bed. Venier et al. [52] distinguish between the

• “Schaeffermodel” (the solid frictional pressure formulation of Syamlal
et al. [22] in combination with the frictional viscosity model of
Schaeffer [23] as employed in this study).

• “Johnson and Jackson model” (the solid frictional pressure model of
Johnson and Jackson [21] as employed in this study and the frictional
viscosity model of Johnson and Jackson [21] which, in contrast to the
model of Schaeffer [23], is independent of the shear rate).

However, it is the solid pressure formulationwhich in factmakes the
difference because the solid frictional pressure formulation of Syamlal
o right: frictional viscosity, granular pressure, granular temperature.



Fig. 12. Zoom of the top-bed region of the pre-simulation of air #5, air, a = 3 (For full field plots see Fig. B.1 and Fig. B.6 in Appendix B). Black arrows denote solid velocity. Left: Colored
horizontal lines represent constants of solid volume fraction. Right: Colored horizontal lines represent constants of kinetic/collisional solid pressure.
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et al. [22] diverges to levels of severalmagnitudes larger than the one of
Johnson and Jackson [21]. Hence, the combination of the solid frictional
pressure formulation of Syamlal et al. [22] and the frictional viscosity
model of Schaeffer [23] may be a viable option in order to decrease
the magnitude of the liquid-like state of the solid phase below the top
of the sediment bed. However, the frictional pressure formulation of
Syamlal et al. [22] is available as a solid frictional pressure model in Flu-
ent but its application does also lead to the velocity field disturbance at
the top of the sediment bed, as described in sections 3.7 and 4.1.

If an alternative material function is utilized for the frictional viscos-
ity, for instance the one put forward by Laux [28], heap building is gen-
erally enhanced because the material functions of Laux and the one
Schaeffer [23] differ by one order of magnitude.

4.4. Numerical results vs. scaling of experimental data

Major factors affecting the comparison of numerical and experimen-
tal results are:

• The previouslymentioned top bed velocity defectwhich leads to an on-
going flow of the outer layer after the deposit has reached a first quasi
steady-state similar to the angle of repose of the material. This flow
continuously decreases the deposit height, increases the run-out
length and ultimately leads to an entirely flat bed for sufficiently
long flow times.

• Factors not taken into account in the scaling laws of of Bougouin and
Lacaze [2] and Lube et al. [3] such as the materials angle of internal
friction, the particle diameter and the scale of the cliff as well as initial
conditions.

• The performance of the closures, in particular the frictional pressure
and stress models, utilized to describe the solid phase.

If the solid phase is simply patched into the domain, it is crucial to
identify the solid volume fraction of the model which relates to the
solid volume fraction in the realworld. In case ofwater as the interstitial
fluid, the collapse happens in about 2–3 s. For a liquidfirst phase, the ini-
tial solid volume fraction of the cliff is known to have a drastic effect on
the dynamics of the collapse [10]. From a logical standpoint, our results
obtained with the pre-simulated settled solid bed in dynamic equilib-
rium (αs, 0 ≈ 0.59) and more so our αs, 0 = 0.60 results are equivalent
with the loose solid bed (αs, 0 ≈ 0.55) of Rondon et al. (2011) [10] be-
cause the plain settling of solids in our numerical pre-simulation is pre-
cisely how Rondon et al. (2011) [10] obtained the initial granular
column in their experiments. Hence, the numerical model needs to be
tuned such that the pre-simulations result in settled beds with αs, 0 ≈
0.55, for instance by adjusting the maximum packing density αs, mpd

and the beginning of the frictional regime αs, f.
Now, considering our αs, 0 = 0.55 results, the full collapse of the
small particle size cliffs may be explained by the fact that the αs, 0 =
0.55 in our simulations corresponds to an unsettled and hence
uncompacted state in the real world. Therefore, in the framework of
the model, no significant frictional viscosity build-up could occurs
within the time scale of the collapse. Frictional viscosity builds up over
time because of the developing compaction process in the remaining
cliff. This process occurs on a certain time scale as the liquid must flow
out of the bed. This outflowprocess takesmuch longer in case of smaller
particles because the Stokes settling velocity scales with the square of
the particle diameter and so does the permeability of a packed bed of
solids. Hence, flow dynamics are governed by the liquid because of the
low Stokes numbers and the collapse of the granular column is thus
dominated by fluid inertia rather than the particles itself. Once liquid
is ejected from the granular pile and the granular collapse occurs
small particles do have insufficient inertia to resist the liquid flow and
counteract the collapse. The build-up of frictional pressure and thus fric-
tional viscosity does not occur sufficiently within the time scale of the
collapse. The granular media thus remains in a flowing state and may
level out prior to reaching sufficient frictional viscosity levels to repre-
sent the Mohr-Coulomb yield criterion inherent in the Schaeffer [23]
frictional viscosity model. The role of particle and fluid inertia also ex-
plains the different order of the various particle diameter results when
compared to the VR and IR scaling laws: Smaller particles follow the
flow and therefore less deposit height and smaller run-out length may
occur.

Therefore, to first compact the solid phase under the pure influence
of gravity is the preferred strategy to obtain correct IC, with sufficiently
accurate profiles of volume fraction, solid pressure, and frictional viscos-
ity. The failure of these in some simulations is attributed to the afore-
mentioned top bed velocity defect, which, as shown in Fig. 11, may
negatively affect the solid frictional viscosity field.

Various spatial scales seem to lead to different non-dimensional
deposit heights and run-out lengths. Apparently, these two quanti-
ties are not universal for a given granular material in the utilized
modeling framework. The top bed velocity defect is contributing to
this effect because the ratio of the outer layer flow thickness to
the scale of the cliff varies. In addition, the frictional pressure may
also play a role. In case of larger spatial scales, a more compacted
bed is produced which then yields higher average levels of the fric-
tional viscosity. For instance, αs, pack, defined as the maximum pack-
ing density observed in the entire domain, is larger for large systems
(αs, pack ≈ 0.625) and smaller for smaller systems (αs, pack ≈ 0.605).
As the build-up and break down of the frictional viscosity occurs on
time scales in the order of the initial collapse of the cliff, the differ-
ent average frictional viscosity levels may also contribute to the cliff
scale being a factor.
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The scaling laws are based on 3D experiments in a channel and may
thus be affected by the z-dimension in terms of friction between parti-
cles and the channel sidewalls. The 2D simulations assume an infinitely
wide channel.

With all these factors in mind, the performance of the numerical
model is much better than it seems at first glance. While in its present
form it does not allow accurate quantitative predictions of the final
run-out length and final deposit height it may be tuned with regards
to the solid frictional pressure and frictional viscosity formulations as
well as numerical coefficients such as the angle of internal friction to
yield better quantitative results. However, the time-dependency of the
results due to the top bed velocity defect remains an issue and needs fur-
ther attention.

4.5. Consequences for modeling of hydraulic conveying

In general, the TFM-KTGF modeling framework as utilized in this
study seems capable of modeling hydraulic conveying on a qualita-
tive basis. However, due to several factors such as the top bed veloc-
ity defect as well as the required tuning of model parameters,
quantitative results will most likely be incorrect. Especially the arti-
ficial agitation of the bed surface will lead to an overestimation of
transported solids. Presence of flow will thus immediately result
in transport of solids in the streamwise direction although physics
dictate a critical value of bed shear stress to be exceeded to mobilize
grains and transport solids. For the very same reason, modeling of
dune migration is not adequately possible, at least on larger time
scales. While the occurrence of reverse flow at the lee side of the
dune may help to sustain the dune shape, the top bed velocity defect
will cause a disintegration of the dune over extended flow times.

5. Conclusions & outlook

Wehave investigated the CCP for differentfluids, initial solid volume
fractions, aspect ratios as well as particle and cliff scale combinations
with the TFM-KTGF-SM framework.
At steady-state, themodel does not yield an accurate physical repre-
sentation of a stable deposit close to the angle of repose of the material.
Instead, a thin layer at the top of the sediment remains flowing, yielding
a scale-dependent disintegration of the cliff over longer periods of time.
We suspect this phenomenon to be a consequence of the numerical so-
lutions strategy of Fluentwhichmay result in some solid flux imbalance
at top-bed regions where the gradient of the solids kinetic/collisional
pressure is high.

Model tuning based on calibration of parameters (angle of internal
friction, solid volume fraction threshold for the frictional regime, maxi-
mum packing density) and possibly alternative closures for both solid
frictional pressure and solid viscosity are required to match the solid
volume fraction of the model with the solid volume fraction of the real
world and better replicate the experimental data. On the other hand,
experimental spread and missing experimental data for the shear-
thinning fluids require more comprehensive experimental data for val-
idation purposes.

If the model in its current form is used for transport modeling of
cuttings in wellbore flows, the top bed velocity defect will lead to an
unknown overestimation of transported solids. When it comes to
the modeling of dune migration, the top bed velocity defectwill likely
cause disintegration of the dune over longer periods of time.
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Appendix A. Dimensional final deposit shapes

A.1. Initial solid volume fraction αs, 0 ≈ 0.59

A.1.1. Air
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Fig. A.1. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in air for initial solid volume fraction αs, 0≈ 0.59 and aspect ratio a=2 as given by Table 3.
The individual shapes represent the collapsing cliff at t= 0, 1, 2, 3,4 s. The final values of xf = x(t= 4 s) and yf = y(t= 4 s) are highlighted and correspond to the values depicted in Fig. 5.
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Fig. A.2.Time evolution of dimensional shapes (x and ypositions of the cliff boundary) of sand in air for initial solid volume fractionαs, 0≈ 0.59 and aspect ratio a=3. For further description
see caption of Fig. A.1. Videos available here: https://www.youtube.com/playlist?list=PLfeJTTWUNqAWQZ6mgCWEXgR7_IpCQdfOo.

https://www.youtube.com/playlist?list=PLfeJTTWUNqAWQZ6mgCWEXgR7_IpCQdfOo
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A.1.2. H2O
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Fig. A.3. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand inwater for initial solid volume fraction αs, 0≈ 0.59 and aspect ratio a=2 and the different
cases as given by Table 3. The individual shapes represent the collapsing cliff at t = 0, 10, 20, …,100 s. The final values of xf = x(t = 100 s) and xf = y(t = 100 s) are highlighted and
correspond to the values depicted in Fig. 8.
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Fig. A.4. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in water for initial solid volume fraction αs, 0 ≈ 0.59 and aspect ratio a = 3. For further
description see caption of Fig. A.3. Videos available here.: https://www.youtube.com/playlist?list=PLfeJTTWUNqAVyrW3M9QMmxhN9v3jz9knq.

https://www.youtube.com/playlist?list=PLfeJTTWUNqAVyrW3M9QMmxhN9v3jz9knq
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A.2. Initial solid volume fraction αs, 0 = 0.55

A.2.1. Air
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Fig. A.5. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in air for initial solid volume fraction αs, 0 = 0.55 and aspect ratio a= 1 and the different
cases as given by Table 3. The individual shapes represent the collapsing cliff at t=0, 1, 2 s. Thefinal values of xf= x(t=2 s) and yf= y(t=2 s) are highlighted and correspond to the values
depicted in Fig. 6.
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Fig. A.6. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in air for initial solid volume fraction αs, 0 = 0.55 and aspect ratio a = 2. For further
description see caption of Fig. A.5.
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Fig. A.7. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in air for initial solid volume fraction αs, 0 = 0.55 and aspect ratio a = 3. For further
description see caption of Fig. A.5.
A.2.2. H2O
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Fig. A.8. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand inwater for initial solid volume fraction αs, 0 = 0.55 and aspect ratio a=1 and the different
cases as given by Table 3. The individual shapes represent the collapsing cliff at t=0, 1, 2 s. The final values of xf= x(t=2 s) and yf= y(t=2 s) are highlighted and correspond to the values
depicted in Fig. 9.
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Fig. A.9. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in water for initial solid volume fraction αs, 0 = 0.55 and aspect ratio a = 2. For further
description see caption of Fig. A.8.
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Fig. A.10. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in water for initial solid volume fraction αs, 0 = 0.55 and aspect ratio a = 3. For further
description see caption of Fig. A.8.
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A.3. . Initial solid volume fraction αs, 0 = 0.60

A.3.1. Air
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Fig. A.11. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in air for initial solid volume fraction αs, 0 = 0.60 and aspect ratio a=1 and the different
cases as given by Table 3. The individual shapes represent the collapsing cliff at t= 0, 2 s. The final values of xf = x(t=2 s) and yf = y(t=2 s) are highlighted and correspond to the values
depicted in Fig. 7.
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Fig. A.12. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in air for initial solid volume fraction αs, 0 = 0.60 and aspect ratio a = 2. For further
description see caption of Fig. A.11.
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Fig. A.13. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in air for initial solid volume fraction αs, 0 = 0.60 and aspect ratio a = 3. For further
description see caption of Fig. A.11.
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Fig. A.14. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand inwater for initial solid volume fractionαs, 0= 0.60 and aspect ratio a=1and the different
cases as given by Table 3. The individual shapes represent the collapsing cliff at t=0, 10, 20,…,60 s. Thefinal values of xf= x(t=60 s) and xf= y(t=60 s) are highlighted and correspond to
the values depicted in Fig. 10.
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Fig. A.15. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in water for initial solid volume fraction αs, 0 = 0.60 and aspect ratio a = 2. For further
description see caption of Figure Fig. A.14.
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Fig. A.16. Time evolution of dimensional shapes (x and y positions of the cliff boundary) of sand in water for initial solid volume fraction αs, 0 = 0.60 and aspect ratio a = 3. For further
description see caption of Fig. A.14.
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Appendix B. Field plots for αs, 0 ≈ 0.59, a = 3, air, #5
Fig. B.1. Solid volume fraction and solid velocity (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
Fig. B.2. Solid pressure and solid velocity (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
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Fig. B.3. y-component of solid pressure gradient (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
Fig. B.4. Frictional pressure and solid velocity (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
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Fig. B.5. y-component of frictional pressure gradient (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
Fig. B.6. Kinetic/collisional pressure and solid velocity (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
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Fig. B.7. y-component of kinetic/collisional pressure gradient and solid velocity (result ofαs, 0≈ 0.59, a=3, air, #5 pre-simulation, zoom on top of bed,maximumsolid velocity 0.47m/s).
Fig. B.8. Granular temperature and solid velocity (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
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Fig. B.9. Solid strain rate and solid velocity (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).
Fig. B.10. Solid ∂u/∂y and solid velocity (result of αs, 0 ≈ 0.59, a = 3, air, #5 pre-simulation, zoom on top of bed, maximum solid velocity 0.47 m/s).



456 A. Busch, S.T. Johansen / Powder Technology 364 (2020) 429–456
References

[1] R. Delannay, A. Valance, A. Mangeney, O. Roche, P. Richard, Granular and particle-
laden flows: from laboratory experiments to field observations, J. Phys. D. Appl.
Phys. 50 (5) (Feb. 2017), 053001.

[2] A. Bougouin, L. Lacaze, Granular collapse in a fluid: different flow regimes for an ini-
tially dense-packing, Physical Review Fluids 3 (6) (Jun. 2018).

[3] G. Lube, H.E. Huppert, R.S.J. Sparks, A. Freundt, Collapses of two-dimensional granu-
lar columns, Phys. Rev. E 72 (4) (Oct. 2005).

[4] A. Mangeney, O. Roche, O. Hungr, N. Mangold, G. Faccanoni, A. Lucas, Erosion and
mobility in granular collapse over sloping beds, J. Geophys. Res. 115 (F3)
(Sep. 2010).

[5] S.J. de Vet, B. Yohannes, K.M. Hill, J.R. de Bruyn, Collapse of a rectangular well in a
quasi-two-dimensional granular bed, Phys. Rev. E 82 (4) (Oct. 2010).

[6] S.J. de Vet, J.R. de Bruyn, Shape of impact craters in granular media, Phys. Rev. E 76
(4) (Oct. 2007).

[7] S. Siavoshi, A. Kudrolli, Failure of a granular step, Phys. Rev. E 71 (5) (May 2005).
[8] E.L. Thompson, H.E. Huppert, Granular column collapses: further experimental re-

sults, J. Fluid Mech. 575 (Mar. 2007) 177.
[9] L. Lacaze, J.C. Phillips, R.R. Kerswell, Planar collapse of a granular column: experi-

ments and discrete element simulations, Phys. Fluids 20 (6) (Jun. 2008), 063302.
[10] L. Rondon, O. Pouliquen, P. Aussillous, Granular collapse in a fluid: role of the initial

volume fraction, Phys. Fluids 23 (7) (Jul. 2011), 073301.
[11] M. Pailha, et al., Initiation of Submarine Granular Avalanches: Role of the Initial Vol-

ume Fraction, 1027, 2008 935–937.
[12] P. Jop, Rheological properties of dense granular flows, Comptes Rendus Physique 16

(1) (Jan. 2015) 62–72.
[13] P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows, Nature

441 (7094) (Jun. 2006) 727–730.
[14] F. da Cruz, S. Emam, M. Prochnow, J.-N. Roux, F. Chevoir, Rheophysics of dense gran-

ular materials: discrete simulation of plane shear flows, Phys. Rev. E 72 (2) (Aug.
2005).

[15] P.-Y. Lagrée, L. Staron, S. Popinet, The granular column collapse as a continuum: va-
lidity of a two-dimensional Navier–stokes model with a μ(I)-rheology, J. Fluid Mech.
686 (Nov. 2011) 378–408.

[16] T. Barker, D.G. Schaeffer, M. Shearer, J.M.N.T. Gray, Well-posed continuum equations
for granular flow with compressibility and μ ( I )-rheology, Proc. R. Soc. A 473
(2201) (May 2017), 20160846.

[17] S.B. Savage, Granular flows down rough inclines - review and extension, Studies in
Applied Mechanics, vol. 7, Elsevier 1983, pp. 261–282.

[18] S.B. Savage, R. Pfeffer, Z.M. Zhao, Solids transport, separation and classification, Pow-
der Technol. 88 (3) (1996) 323–333.

[19] S.B. Savage, D.J. Jeffrey, The stress tensor in a granular flow at high shear rates, J.
Fluid Mech. 110 (1981) 255–272.

[20] C.K.K. Lun, S.B. Savage, D.J. Jeffrey, N. Chepurniy, Kinetic theories for granular flow:
inelastic particles in Couette flow and slightly inelastic particles in a general
flowfield, J. Fluid Mech. 140 (1984) 223–256.

[21] P.C. Johnson, R. Jackson, Frictional–collisional constitutive relations for granular ma-
terials, with application to plane shearing, J. Fluid Mech. 176 (1987) 67–93.

[22] M. Syamlal, W. Rogers, T.J. O'Brien,MFIX Documentation Theory Guide. Morgantown:
U.S. Department of Energy, Office of Fossil Energy, 1993.

[23] D.G. Schaeffer, Instability in the evolution equations describing incompressible
granular flow, Journal of differential equations 66 (1) (1987) 19–50.

[24] S. Schneiderbauer, A. Aigner, S. Pirker, A comprehensive frictional-kinetic model for
gas–particle flows: analysis of fluidized and moving bed regimes, Chem. Eng. Sci. 80
(Oct. 2012) 279–292.

[25] S. Chialvo, S. Sundaresan, A modified kinetic theory for frictional granular flows in
dense and dilute regimes, Phys. Fluids 25 (7) (2013), 070603.

[26] K. Kumar, J.-Y. Delenne, K. Soga, Mechanics of granular column collapse in fluid at
varying slope angles, Journal of Hydrodynamics, Ser. B 29 (4) (Aug. 2017) 529–541.

[27] C. Wang, Y. Wang, C. Peng, X. Meng, Two-fluid smoothed particle hydrodynamics
simulation of submerged granular column collapse, Mech. Res. Commun. 79 (Jan.
2017) 15–23.
[28] H. Laux, “Modeling of Dilute and Dense Dispersed Fluid-Particle Two-Phase Flow,”
PhD Dissertation, Norwegian University of Science and Technology, Norway, Trond-
heim, 1998.

[29] I.R. Ionescu, A. Mangeney, F. Bouchut, O. Roche, Viscoplastic modeling of granular
column collapse with pressure-dependent rheology, J. Non-Newtonian Fluid
Mech. 219 (May 2015) 1–18.

[30] B.H. Ng, Y. Ding, M. Ghadiri, Assessment of the kinetic–frictional model for dense
granular flow, Particuology 6 (1) (Feb. 2008) 50–58.

[31] S.B. Savage, M.H. Babaei, T. Dabros, Modeling gravitational collapse of rectangular
granular piles in air and water, Mech. Res. Commun. 56 (Mar. 2014) 1–10.

[32] A. Nikolopoulos, N. Nikolopoulos, N. Varveris, S. Karellas, P. Grammelis, E. Kakaras,
Investigation of proper modeling of very dense granular flows in the recirculation
system of CFBs, Particuology 10 (6) (Dec. 2012) 699–709.

[33] E. Ghadirian, H. Arastoopour, Numerical analysis of frictional behavior of dense gas–
solid systems, Particuology 32 (Jun. 2017) 178–190.

[34] D. Gidaspow, R. Bezburuah, J. Ding, Hydrodynamics of circulating fluidized beds: ki-
netic theory approach, Fluidization VII, Proceedings of the 7th Engineering Foundation
Conference on Fluidization, Gold Coast, 1992.

[35] C.Y. Wen, Y.H. Yu, “Mechanics of fluidization,” presented at the Chem. Eng. Prog.,
Symp. Ser, 62, 1966 100–111.

[36] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48 (1952) 89–94.
[37] M.M. Cross, Rheology of non-Newtonian fluids: a new flow equation for

pseudoplastic systems, J. Colloid Sci. 20 (5) (1965) 417–437.
[38] A. Busch, V. Myrseth, M. Khatibi, P. Skjetne, S. Hovda, S.T. Johansen, Rheological

characterization of Polyanionic cellulose solutions with application to drilling fluids
and cuttings transport modeling, Appl. Rheol. 28 (2) (2018) 1–16.

[39] J. Ding, D. Gidaspow, A bubbling fluidization model using kinetic theory of granular
flow, AICHE J. 36 (4) (Apr. 1990) 523–538.

[40] R.A. Bagnold, Experiments on a gravity-free dispersion of large solid spheres in a
Newtonian fluid under shear, Proceedings of the Royal Society of London. Series
A. Mathematical and Physical Sciences 225 (1160) (1954) 49–63.

[41] S. Ogawa, A. Umemura, N. Oshima, On the equations of fully fluidized granular ma-
terials, Zeitschrift für angewandte Mathematik und Physik ZAMP 31 (4) (Jul. 1980)
483–493.

[42] J.L. Sinclair, R. Jackson, Gas-particle flow in a vertical pipe with particle-particle in-
teractions, AICHE J. 35 (9) (Sep. 1989) 1473–1486.

[43] S. Vasquez, A phase coupled method for solving multiphase problems on unstruc-
tured mesh, Presented at the ASME 200 Fluids Engineering Division Summer Meet-
ing, 2000.

[44] B.P. Leonard, A stable and accurate convective modelling procedure based on qua-
dratic upstream interpolation, Comput. Methods Appl. Mech. Eng. 19 (1) (1979)
59–98.

[45] Inc ANSYS, ANSYS Fluent User Guide R17, vol. 2, ANSYS, Inc., Canonsburg, PA, 2016.
[46] Inc ANSYS, ANSYS Fluent Theory Guide R17, vol. 2, ANSYS, Inc., Canonsburg, PA,

2016.
[47] C.M. Rhie, W.L. Chow, Numerical study of the turbulent flow past an airfoil with

trailing edge separation, AIAA J. 21 (11) (Nov. 1983) 1525–1532.
[48] H. Karema, Numerical treatment of inter-phase coupling and phasic pressures in

multi-fluid modelling, VTT PUBLICATIONS 4 (5) (2002) 8.
[49] M. Syamlal, MFIX Documentation Numerical Technique. Morgantown, U.S. Depart-

ment of Energy, Office of Fossil Energy, 1998.
[50] E.A. Meese, S.T. Johansen, A simulation concept for generic simulation of multi-

material flow using staggered cartesian grids, Progress in Applied CFD–CFD2017 Se-
lected papers from 12th International Conference on Computational Fluid Dynamics
in the Oil & Gas, Metallurgical and Process Industries, Trondheim 2017, pp. 253–263.

[51] A. Passalacqua, R.O. Fox, Implementation of an iterative solution procedure for
multi-fluid gas–particle flow models on unstructured grids, Powder Technol. 213
(1–3) (Nov. 2011) 174–187.

[52] C.M. Venier, S. Marquez Damian, N.M. Nigro, Numerical aspects of Eulerian gas–
particles flow formulations, Comput. Fluids 133 (Jul. 2016) 151–169.

[53] S. Noelle, N. Pankratz, G. Puppo, J.R. Natvig, Well-balanced finite volume schemes of
arbitrary order of accuracy for shallow water flows, J. Comput. Phys. 213 (2) (2006)
474–499.

http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0005
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0005
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0005
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0010
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0010
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0015
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0015
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0020
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0020
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0020
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0025
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0025
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0030
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0030
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0035
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0040
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0040
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0045
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0045
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0050
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0050
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0055
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0055
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0060
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0060
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0065
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0065
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0070
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0070
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0070
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0075
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0075
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0075
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0080
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0080
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0080
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0085
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0085
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0090
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0090
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0095
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0095
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0100
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0100
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0100
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0105
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0105
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0110
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0110
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0115
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0115
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0120
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0120
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0120
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0125
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0125
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0130
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0130
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0135
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0135
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0135
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0140
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0140
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0140
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0145
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0145
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0145
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0150
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0150
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0155
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0155
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0160
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0160
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0160
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0165
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0165
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0170
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0170
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0170
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0175
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0175
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0180
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0185
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0185
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0190
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0190
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0190
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0195
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0195
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0200
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0200
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0200
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0205
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0205
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0205
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0210
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0210
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0215
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0215
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0215
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0220
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0220
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0220
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0225
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0230
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0230
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0235
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0235
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0240
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0240
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0245
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0245
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0250
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0250
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0250
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0250
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0255
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0255
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0255
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0260
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0260
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0265
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0265
http://refhub.elsevier.com/S0032-5910(20)30053-X/rf0265

	On the validity of the two-�fluid-�KTGF approach for dense gravity-�driven granular flows as implemented in ANSYS Fluent R17.2
	1. Introduction
	1.1. From cuttings transport modeling to the CCP
	1.2. Experimental work
	1.3. Modeling work
	1.4. Scope and structure

	2. Materials & methods
	2.1. Physical model
	2.2. Fluid rheological properties
	2.3. Solid rheological properties
	2.4. Test matrix
	2.5. CFD setup & numerics

	3. Results
	3.1. Granular flow regimes
	3.2. Sand in air
	3.3. Sand in water
	3.4. Sand in PAC
	3.5. Initial conditions in case of αs, 0 ≈ 0.59
	3.6. Non-zero velocity at top of sediment bed

	4. Discussion
	4.1. Non-zero velocity at top of bed
	4.2. Computational procedure
	4.3. Relevance of solid closure laws
	4.4. Numerical results vs. scaling of experimental data
	4.5. Consequences for modeling of hydraulic conveying

	5. Conclusions & outlook
	Declaration of Competing Interest
	Acknowledgements
	Appendix A. Dimensional final deposit shapes
	A.1. Initial solid volume fraction αs, 0 ≈ 0.59
	A.1.1. Air
	A.1.2. H2O

	A.2. Initial solid volume fraction αs, 0 = 0.55
	A.2.1. Air
	A.2.2. H2O

	A.3. Initial solid volume fraction αs, 0 = 0.60
	A.3.1. Air
	A.3.2. H2O


	Appendix B. Field plots for αs, 0 ≈ 0.59, a = 3, air, #5
	References


