Vis enkel innførsel

dc.contributor.authorWan, Di
dc.contributor.authorDeng, Yun
dc.contributor.authorMeling, Jan Inge Hammer
dc.contributor.authorAlvaro, Antonio
dc.contributor.authorBarnoush, Afrooz
dc.date.accessioned2019-09-18T07:47:18Z
dc.date.available2019-09-18T07:47:18Z
dc.date.created2019-04-17T10:28:44Z
dc.date.issued2019
dc.identifier.citationActa Materialia. 2019, 170 87-99.nb_NO
dc.identifier.issn1359-6454
dc.identifier.urihttp://hdl.handle.net/11250/2617358
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleHydrogen-enhanced fatigue crack growth in a single-edge notched tensile specimen under in-situ hydrogen charging inside an environmental scanning electron microscopenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.source.pagenumber87-99nb_NO
dc.source.volume170nb_NO
dc.source.journalActa Materialianb_NO
dc.identifier.doi10.1016/j.actamat.2019.03.032
dc.identifier.cristin1693039
cristin.unitcode7401,80,64,0
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal