• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF AS
  • Vis innførsel
  •   Hjem
  • SINTEF
  • Publikasjoner fra CRIStin
  • Publikasjoner fra CRIStin - SINTEF AS
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Large Neighborhood Search on the Graphics Processing Unit

Bach, Lukas; Hasle, Geir; Schulz, Christian Ferdinand
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
documentRev3.pdf (585.9Kb)
Permanent lenke
http://hdl.handle.net/11250/2588660
Utgivelsesdato
2018
Metadata
Vis full innførsel
Samlinger
  • Publikasjoner fra CRIStin - SINTEF AS [4386]
  • SINTEF Digital [1681]
Originalversjon
European Journal of Operational Research. 2018, 275 (1), 53-66.   10.1016/j.ejor.2018.11.035
Sammendrag
For computationally hard discrete optimization problems, we rely on increasing computing power to reduce the solution time. In recent years the computational capacity of the Graphics Processing Unit (GPU) in ordinary desktop computers has increased significantly compared to the Central Processing Unit (CPU). It is interesting to explore how this alternative source of computing power can be utilized. Most investigations of GPU-based methods in discrete optimization use swarm intelligence or evolutionary methods. One of the best single-solution metaheuristics for discrete optimization is Adaptive Large Neighborhood Search (ALNS). GPU parallelization of ALNS has not been reported in the literature. We gain knowledge on the difficulties of developing a data parallel version of the ALNS, and investigate the efficiency of ALNS on the GPU. To this end, we develop an ALNS for the much studied Distance Constrained Capacitated Vehicle Routing Problem (DCVRP). We compare the performance of our GPU-based ALNS with a state-of-the-art CPU implementation using standard DCVRP benchmarks. While it proved hard to implement certain commonly used mechanisms efficiently on the GPU, experimental results show that our GPU-based ALNS yields highly competitive performance.
 
Adaptive Large Neighborhood Search on the Graphics Processing Unit
 
Tidsskrift
European Journal of Operational Research

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit