Vis enkel innførsel

dc.contributor.authorNordanger, Knut
dc.contributor.authorHoldahl, Runar
dc.contributor.authorKvarving, Arne Morten
dc.contributor.authorRasheed, Adil
dc.contributor.authorKvamsdal, Trond
dc.date.accessioned2018-01-23T10:37:53Z
dc.date.available2018-01-23T10:37:53Z
dc.date.created2014-11-27T23:12:51Z
dc.date.issued2015
dc.identifier.citationComputer Methods in Applied Mechanics and Engineering. 2015, 284 664-688.nb_NO
dc.identifier.issn0045-7825
dc.identifier.urihttp://hdl.handle.net/11250/2478994
dc.description.abstractImplementation of three different Navier–Stokes solvers in an isogeometric finite element framework is presented in this paper. The three solvers Chorin projection method and Coupled formulation , both with the Spalart–Allmaras turbulence model, and Variational Multiscale (VMS) method have been applied to simulate flow past a two-dimensional NACA0012 airfoil at a high Reynolds number (Re=3×106Re=3×106) for four different angles of attack. The predicted flow characteristics have been compared and the effects of increasing the order of the spline element on the accuracy of prediction and computational efficiency are evaluated. In this study it turns out that flow separation does not take place up to an angle of attack of 16°. Up to this angle of attack all three solvers predict similar results in good agreement with each other and with available experimental results. However, a big spread in lift and drag coefficients is observed in the stall regime. Our study also shows that for linear spline elements all three solvers are computationally similar. For quadratic spline elements the Chorin solver compares favorably to the others based on the results presented here.
dc.language.isoengnb_NO
dc.subjectCFD
dc.subjectVindkraft
dc.subjectWind power
dc.subjectNumeriske metoder
dc.subjectNumerical methods
dc.subjectElementmetoder
dc.subjectFinite element methods
dc.titleImplementation and comparison of three isogeometric Navier–Stokes solvers applied to simulation of flow past a fixed 2D NACA0012 airfoil at high Reynolds numbernb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersion
dc.subject.nsiVDP::Matematikk og naturvitenskap: 400
dc.subject.nsiVDP::Mathematics and natural scienses: 400
dc.source.pagenumber664-688nb_NO
dc.source.volume284nb_NO
dc.source.journalComputer Methods in Applied Mechanics and Engineeringnb_NO
dc.identifier.doi10.1016/j.cma.2014.10.033
dc.identifier.cristin1178123
dc.relation.projectNotur/NorStore: NN9322Knb_NO
dc.relation.projectNorges forskningsråd: 193823nb_NO
cristin.unitcode7401,90,11,0
cristin.unitnameAnvendt matematikk
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel