Show simple item record

dc.contributor.authorNordhagen, Håkon Ottar
dc.contributor.authorMunkejord, Svend Tollak
dc.contributor.authorHammer, Morten
dc.contributor.authorGruben, Gaute
dc.contributor.authorFourmeau, Marion
dc.contributor.authorDumoulin, Stephane
dc.date.accessioned2017-11-17T09:41:49Z
dc.date.available2017-11-17T09:41:49Z
dc.date.created2017-04-20T08:56:38Z
dc.date.issued2017
dc.identifier.citationEngineering structures. 2017, 143 245-260.nb_NO
dc.identifier.issn0141-0296
dc.identifier.urihttp://hdl.handle.net/11250/2466834
dc.description.abstractThis work considers a predictive numerical modelling approach for fracture-propagation control in CO2-transport pipelines, an area where current engineering tools do not work. Fluid-structure interaction model simulations are compared with three published medium-scale crack-arrest experiments with CO2-rich mixtures. The fluid flow is calculated by a one-dimensional homogeneous equilibrium model, and the thermodynamic properties of CO2 are modelled using the Span–Wagner and the Peng–Robinson equation of state. The pipe material is represented by a finite-element model taking into account large deformations and fracture propagation. Material data commonly found in the literature for steel pipes in crack-arrest experiments is not sufficient to directly calibrate the material model used here. A novel three-step calibration procedure is proposed to fill the information gap in the material data. The resulting material model is based on J2 plasticity and a phenomenological ductile fracture criterion. It is shown that the numerical model provides good predictions of the pressure along the pipe, the ductile fracture speed and a conservative estimate of the final crack length. An approximately plane-strain stress state ahead of crack tip implies that a fracture criterion accounting for a wide range of stress states is not necessary.nb_NO
dc.language.isoengnb_NO
dc.relation.urihttp://www.pvv.org/~stm/research/coupled-co2-n2_preprint.pdf
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectKarbondioksidnb_NO
dc.subjectCarbon dioxidenb_NO
dc.subjectTrykkavlastningnb_NO
dc.subjectDepressurizationnb_NO
dc.subjectCFDnb_NO
dc.subjectRørnb_NO
dc.subjectPipelinesnb_NO
dc.subjectElementmetodernb_NO
dc.subjectFinite element methodsnb_NO
dc.titleA fracture-propagation-control model for pipelines transporting CO2-rich mixtures including a new method for material-model calibrationnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionacceptedVersionnb_NO
dc.rights.holderThe Authors have copyright to accepted versionnb_NO
dc.source.pagenumber245-260nb_NO
dc.source.volume143nb_NO
dc.source.journalEngineering structuresnb_NO
dc.identifier.doi10.1016/j.engstruct.2017.04.015
dc.identifier.cristin1465640
dc.relation.projectNorges forskningsråd: 193816nb_NO
cristin.unitcode7401,80,6,6
cristin.unitcode7548,60,0,0
cristin.unitcode7401,80,6,0
cristin.unitcode7401,80,64,0
cristin.unitnameMaterial- og konstruksjonsmekanikk
cristin.unitnameGassteknologi
cristin.unitnameMaterialer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal