Vis enkel innførsel

dc.contributor.authorSletnes, Malin
dc.contributor.authorJelle, Bjørn Petter
dc.contributor.authorRisholt, Birgit Dagrun
dc.date.accessioned2017-10-26T07:09:18Z
dc.date.available2017-10-26T07:09:18Z
dc.date.created2017-10-20T09:39:16Z
dc.date.issued2017
dc.identifier.citationEnergy Procedia. 2017, 132 327-332.nb_NO
dc.identifier.issn1876-6102
dc.identifier.urihttp://hdl.handle.net/11250/2462234
dc.description.abstractThe market share for fibre reinforced aerogel insulation materials is expected to increase as production costs are lowered, and in this context, the development of layered products with integrated aerogel is highly interesting. The effect of uniaxial compression and humidity on the thermal conductivity of commercially available aerogel insulation blankets were measured in order to assess the feasibility of integrating aerogel blankets with other building components. The thermal performance under uniaxial compression was measured by compressing commercially available aerogel blanket materials in a heat flow meter apparatus. Up to 11.5 % decrease in apparent thermal conductivity was observed at a compressive strain of 16 %, corresponding to an applied stress of approximately 22 kPa. The thermal insulation properties of the aerogel insulation blankets remained excellent within the range of compressive stress investigated in this study (up to about 40 kPa), making aerogel integration highly interesting for building components that will be used under compression. However, a 32 % increase in thermal conductivity was observed upon exposure to an atmosphere of 95 % relative humidity (RH). Thus, in order to widen the range of application for fibre reinforced aerogel insulation materials, further investigations should be conducted to understand and improve their tolerance to moisturenb_NO
dc.description.sponsorshipAcknowledgements. This work has been supported by the Research Council of Norway and several partners through “The Research Centre on Zero Emission Buildings” (ZEB).nb_NO
dc.language.isoengnb_NO
dc.publisherElsevier Ltd.nb_NO
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectAerogelnb_NO
dc.subjectIntegrated productsnb_NO
dc.subjectThermal conductivitynb_NO
dc.subjectMoisturenb_NO
dc.subjectUniaxial compressionnb_NO
dc.titleFeasibility Study of Novel Integrated Aerogel Solutionsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.rights.holder© The Authorsnb_NO
dc.subject.nsiVDP::Technology: 500nb_NO
dc.source.pagenumber327-332nb_NO
dc.source.volume132nb_NO
dc.source.journalEnergy Procedianb_NO
dc.identifier.cristin1506160
dc.relation.projectNorges forskningsråd: 193830nb_NO
cristin.unitcode7401,30,0,0
cristin.unitnameSINTEF Byggforsk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal