Vis enkel innførsel

dc.contributor.authorKavli, Tom
dc.contributor.authorKirkhus, Trine
dc.contributor.authorThielemann, Jens T
dc.contributor.authorJagileski, Borys
dc.date.accessioned2017-02-20T14:14:33Z
dc.date.available2017-02-20T14:14:33Z
dc.date.created2017-02-16T15:41:30Z
dc.date.issued2008
dc.identifier.citationTwo- and Three-Dimensional Methods for Inspection and Metrology VInb_NO
dc.identifier.isbn9780819472861
dc.identifier.urihttp://hdl.handle.net/11250/2431450
dc.description.abstractRecently, Range Imaging (RIM) cameras have become available that capture high resolution range images at video rate. Such cameras measure the distance from the scene for each pixel independently based upon a measured time of flight (TOF). Some cameras, such as the SwissRanger™ SR-3000, measure the TOF based on the phase shift of reflected light from a modulated light source. Such cameras are shown to be susceptible to severe distortions in the measured range due to light scattering within the lens and camera. Earlier work induced using a simplified Gaussian point spread function and inverse filtering to compensate for such distortions. In this work a method is proposed for how to identify and use generally shaped empirical models for the point spread function to get a more accurate compensation. The otherwise difficult inverse problem is solved by using the forward model iteratively, according to well established procedures from image restoration. Each iteration is done as a sequential process, starting with the brightest parts of the image and then moving sequentially to the least bright parts, with each step subtracting the estimated effects from the measurements. This approach gives a faster and more reliable compensation convergence. An average reduction of the error by more than 60% is demonstrated on real images. The computation load corresponds to one or two convolutions of the measured complex image with a real filter of the same size as the image.
dc.language.isoengnb_NO
dc.relation.ispartofTwo- and Three-Dimensional Methods for Inspection and Metrology VI
dc.titleModelling and Compensating Measurement Errors Caused by Scattering in Time-Of-Flight Camerasnb_NO
dc.typeChapternb_NO
dc.identifier.cristin1451364
cristin.unitcode7401,90,41,0
cristin.unitnameOptiske målesystemer og dataanalyse
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel