Vis enkel innførsel

dc.contributor.authorKoybasi, Ozhan
dc.contributor.authorAlagoz, Enver
dc.contributor.authorKrzywda, Alex
dc.contributor.authorArndt, Kirk
dc.contributor.authorBolla, Gina
dc.contributor.authorBortoletto, Daniela
dc.contributor.authorHansen, Thor-Erik
dc.contributor.authorHansen, Trond Andreas
dc.contributor.authorJensen, Geir Uri
dc.contributor.authorKok, Angela Chun Ying
dc.contributor.authorKwan, Simon
dc.contributor.authorLietaer, Nicolas
dc.contributor.authorRivera, Ryan
dc.contributor.authorShipsey, Ian
dc.contributor.authorUplegger, Lorenzo
dc.contributor.authorDa Via, Cinzia
dc.date.accessioned2017-02-09T15:01:28Z
dc.date.available2017-02-09T15:01:28Z
dc.date.created2012-01-02T16:15:45Z
dc.date.issued2011
dc.identifier.citationIEEE Transactions on Nuclear Science. 2011, 58 (3), 1315-1323.nb_NO
dc.identifier.issn0018-9499
dc.identifier.urihttp://hdl.handle.net/11250/2430213
dc.description.abstractThe fabrication of 3D detectors which requires bulk micromachining of columnar electrodes has been realized with advancements in MEMS technology. Since the fabrication of the first 3D prototype in Stanford Nanofabrication Facility in 1997, a significant effort has been put forth to transfer the 3D detector technology to large scale manufacturing for future high luminosity collider experiments, in which the radiation hardness will be the primary concern, and other applications such as medical imaging and X-ray imaging for molecular biology. First, alternative 3D structures, single type column (STC) and double-side double type column (DDTC) 3D detectors, were produced at FBK-irst (Trento, Italy) and CNM-Barcelona (Spain), and assessed thoroughly to improve the production technology towards the standard full-3D detectors. The 3D collaboration has been extended to include SINTEF (Norway), which is committed to small to medium scale production of active edge full-3D silicon sensors. This paper focuses on p-type 3D detectors compatible with the CMS pixel front end electronics from the second run of fabrication at SINTEF clean room facilities. The sensors that passed the wafer level electrical characterization have been bump-bonded at IZM (Germany), assembled into modules and wire-bonded for functional characterization at Purdue University. We report the leakage current characteristics, bump-bond quality, threshold, noise, and gain measurement results of these 3D modules as well as the preliminary beam test data taken at Fermi National Accelerator Laboratory.
dc.language.isoengnb_NO
dc.titleElectrical Characterization and Preliminary Beam Test Results of 3D Silicon CMS Pixel Detectorsnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.source.pagenumber1315-1323nb_NO
dc.source.volume58nb_NO
dc.source.journalIEEE Transactions on Nuclear Sciencenb_NO
dc.source.issue3nb_NO
dc.identifier.doi10.1109/TNS.2011.2117439
dc.identifier.cristin874978
cristin.unitcode7401,90,31,0
cristin.unitnameMikrosystemer og nanoteknologi
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel