Vis enkel innførsel

dc.contributor.authorRedekop, Evgeniy
dc.contributor.authorCordero-Lanzac, Tomás
dc.contributor.authorSalusso, Davide
dc.contributor.authorPokle, Anuj
dc.contributor.authorØien-Ødegaard, Sigurd
dc.contributor.authorSunding, Martin Fleissner
dc.contributor.authorDiplas, Spyridon
dc.contributor.authorNegri, Chiara
dc.contributor.authorBorfecchia, Elisa
dc.contributor.authorBordiga, Silvia
dc.contributor.authorOlsbye, Unni
dc.date.accessioned2024-06-05T08:32:28Z
dc.date.available2024-06-05T08:32:28Z
dc.date.created2024-01-03T17:43:48Z
dc.date.issued2023
dc.identifier.citationChemistry of Materials. 2023, 35 (24), 10434-10445.en_US
dc.identifier.issn0897-4756
dc.identifier.urihttps://hdl.handle.net/11250/3132626
dc.description.abstractZnO–ZrO2 mixed oxide (ZnZrOx) catalysts are widely studied as selective catalysts for CO2 hydrogenation into methanol at high-temperature conditions (300–350 °C) that are preferred for the subsequent in situ zeolite-catalyzed conversion of methanol into hydrocarbons in a tandem process. Zn, a key ingredient of these mixed oxide catalysts, is known to volatilize from ZnO under high-temperature conditions, but little is known about Zn mobility and volatility in mixed oxides. Here, an array of ex situ and in situ characterization techniques (scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDX), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), Infrared (IR)) was used to reveal that Zn2+ species are mobile between the solid solution phase with ZrO2 and segregated and/or embedded ZnO clusters. Upon reductive heat treatments, partially reversible ZnO cluster growth was observed above 250 °C and eventual Zn evaporation above 550 °C. Extensive Zn evaporation leads to catalyst deactivation and methanol selectivity decline in CO2 hydrogenation. These findings extend the fundamental knowledge of Zn-containing mixed oxide catalysts and are highly relevant for the CO2-to-hydrocarbon process optimization.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleZn Redistribution and Volatility in ZnZrOx Catalysts for CO2 Hydrogenationen_US
dc.title.alternativeZn Redistribution and Volatility in ZnZrOx Catalysts for CO2 Hydrogenationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authors. Published by American Chemical Society.en_US
dc.source.pagenumber10434-10445en_US
dc.source.volume35en_US
dc.source.journalChemistry of Materialsen_US
dc.source.issue24en_US
dc.identifier.doi10.1021/acs.chemmater.3c01632
dc.identifier.cristin2220234
dc.relation.projectEU/837733en_US
dc.relation.projectNORTEM: 197405en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal