Vis enkel innførsel

dc.contributor.authorJohnsen, Sverre Gullikstad
dc.date.accessioned2024-05-10T13:16:12Z
dc.date.available2024-05-10T13:16:12Z
dc.date.created2024-03-12T16:30:00Z
dc.date.issued2024
dc.identifier.citationBioengineering. 2024, 11 (3): 239.en_US
dc.identifier.issn2306-5354
dc.identifier.urihttps://hdl.handle.net/11250/3129945
dc.description.abstractComputational rhinology is a specialized branch of biomechanics leveraging engineering techniques for mathematical modelling and simulation to complement the medical field of rhinology. Computational rhinology has already contributed significantly to advancing our understanding of the nasal function, including airflow patterns, mucosal cooling, particle deposition, and drug delivery, and is foreseen as a crucial element in, e.g., the development of virtual surgery as a clinical, patient-specific decision support tool. The current paper delves into the field of computational rhinology from a nasal airflow perspective, highlighting the use of computational fluid dynamics to enhance diagnostics and treatment of breathing disorders. This paper consists of three distinct parts—an introduction to and review of the field of computational rhinology, a review of the published literature on in vitro and in silico studies of nasal airflow, and the presentation and analysis of previously unpublished high-fidelity CFD simulation data of in silico rhinomanometry. While the two first parts of this paper summarize the current status and challenges in the application of computational tools in rhinology, the last part addresses the gross disagreement commonly observed when comparing in silico and in vivo rhinomanometry results. It is concluded that this discrepancy cannot readily be explained by CFD model deficiencies caused by poor choice of turbulence model, insufficient spatial or temporal resolution, or neglecting transient effects. Hence, alternative explanations such as nasal cavity compliance or drag effects due to nasal hair should be investigated.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.urihttps://doi.org/10.11582/2023.00126
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleComputational Rhinology: Unraveling Discrepancies between In Silico and In Vivo Nasal Airflow Assessments for Enhanced Clinical Decision Supporten_US
dc.title.alternativeComputational Rhinology: Unraveling Discrepancies between In Silico and In Vivo Nasal Airflow Assessments for Enhanced Clinical Decision Supporten_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2024 by the author. Published by MDPI.en_US
dc.source.pagenumber82en_US
dc.source.volume11en_US
dc.source.journalBioengineeringen_US
dc.source.issue3en_US
dc.identifier.doi10.3390/bioengineering11030239
dc.identifier.cristin2253875
dc.relation.projectNorges forskningsråd: 303218en_US
dc.relation.projectSigma2: NN9784Ken_US
dc.source.articlenumber239en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal