Vis enkel innførsel

dc.contributor.authorDias, M.
dc.contributor.authorAlmeida Carvalho, Patricia
dc.contributor.authorGonçalves, A.P.
dc.contributor.authorAlves, E.
dc.contributor.authorCorreia, J.B.
dc.date.accessioned2024-04-10T12:56:11Z
dc.date.available2024-04-10T12:56:11Z
dc.date.created2023-07-12T11:30:36Z
dc.date.issued2023
dc.identifier.citationIntermetallics (Barking). 2023, 161: 107960.en_US
dc.identifier.issn0966-9795
dc.identifier.urihttps://hdl.handle.net/11250/3125843
dc.description.abstractHigh-entropy alloys are a class of materials intensely studied in the last years due to their innovative properties. Their unconventional compositions and chemical structures hold promise for achieving unprecedented combinations of mechanical properties. The Cu–Fe–Ni–Mo–W multicomponent alloy was studied using a combination of simulation and experimental production to test the possibility of formation of a simple solid solution. Therefore, Molecular Dynamics and hybrid Molecular Dynamic/Monte Carlo simulations from 10K up to the melting point of the alloy were analyzed together with the experimental production by arc furnace and powder milling. The Molecular Dynamics simulations starting with a bcc type-structure show the formation of a single-phase bcc solid solution type-structure, whereas using Monte Carlo one, generally produced a two-phase mixture. Moreover, the lowest potential energy was obtained when starting from a fcc type-structure and using Monte Carlo simulation giving rise to the formation of a bcc Fe–Mo–W phase and a Cu–Ni fcc type-structure. Dendritic and interdendritic phases were observed in the sample produced by arc furnace while the milled powder evidence an separation of two phases Cu–Fe–Ni phase and W–Mo type-structures. Samples produced by both methods show the formation of bcc and a fcc type-structures. Therefore, the Monte Carlo simulation seems to be closer with the experimental results, which points to a two-phase mixture formation for the Cu–Fe–Ni–Mo–W multicomponent system.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleHybrid molecular dynamic Monte Carlo simulation and experimental production of a multi-component Cu–Fe–Ni–Mo–W alloyen_US
dc.title.alternativeHybrid molecular dynamic Monte Carlo simulation and experimental production of a multi-component Cu–Fe–Ni–Mo–W alloyen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authors. Published by Elsevier.en_US
dc.source.pagenumber10en_US
dc.source.volume161en_US
dc.source.journalIntermetallics (Barking)en_US
dc.identifier.doi10.1016/j.intermet.2023.107960
dc.identifier.cristin2162091
dc.relation.projectNorges forskningsråd: 280545en_US
dc.relation.projectNorges forskningsråd: 275752en_US
dc.source.articlenumber107960en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal