Vis enkel innførsel

dc.contributor.authorFlatscher, Florian
dc.contributor.authorTodt, Juraj
dc.contributor.authorBurghammer, Manfred
dc.contributor.authorSøreide, Hanne-Sofie Marie Scisly
dc.contributor.authorPorz, Lukas
dc.contributor.authorLi, Yanjun
dc.contributor.authorWenner, Sigurd
dc.contributor.authorBobal, Viktor
dc.contributor.authorGanschow, Steffen
dc.contributor.authorSartory, Bernhard
dc.contributor.authorBrunner, Roland
dc.contributor.authorHatzoglou, Constantinos
dc.contributor.authorKeckes, Jozef
dc.contributor.authorRettenwander, Daniel
dc.date.accessioned2024-02-20T11:40:51Z
dc.date.available2024-02-20T11:40:51Z
dc.date.created2023-11-22T08:46:30Z
dc.date.issued2023
dc.identifier.citationSmall. 2023, 2307515.en_US
dc.identifier.issn1613-6810
dc.identifier.urihttps://hdl.handle.net/11250/3118641
dc.description.abstractLithium dendrites belong to the key challenges of solid-state battery research. They are unavoidable due to the imperfect nature of surfaces containing defects of a critical size that can be filled by lithium until fracturing the solid electrolyte. The penetration of Li metal occurs along the propagating crack until a short circuit takes place. It is hypothesized that ion implantation can be used to introduce stress states into Li6.4La3Zr1.4Ta0.6O12 which enables an effective deflection and arrest of dendrites. The compositional and microstructural changes associated with the implantation of Ag-ions are studied via atom probe tomography, electron microscopy, and nano X-ray diffraction indicating that Ag-ions can be implanted up to 1 µm deep and amorphization takes place down to 650–700 nm, in good agreement with kinetic Monte Carlo simulations. Based on diffraction results pronounced stress states up to −700 MPa are generated in the near-surface region. Such a stress zone and the associated microstructural alterations exhibit the ability to not only deflect mechanically introduced cracks but also dendrites, as demonstrated by nano-indentation and galvanostatic cycling experiments with subsequent electron microscopy observations. These results demonstrate ion implantation as a viable technique to design “dendrite-free” solid-state electrolytes for high-power and energy-dense solid-state batteries.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDeflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationen_US
dc.title.alternativeDeflecting Dendrites by Introducing Compressive Stress in Li7La3Zr2O12 Using Ion Implantationen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2023 The Authors. Small published by Wiley-VCH GmbH.en_US
dc.source.pagenumber8en_US
dc.source.journalSmallen_US
dc.identifier.doi10.1002/smll.202307515
dc.identifier.cristin2199993
dc.relation.projectNorges forskningsråd: 309584en_US
dc.relation.projectNorges forskningsråd: 269842en_US
dc.relation.projectNorges forskningsråd: 295864en_US
dc.relation.projectNORTEM: 197405en_US
dc.source.articlenumber2307515en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal