Vis enkel innførsel

dc.contributor.authorDæhli, Lars Edvard Blystad
dc.contributor.authorOlufsen, Sindre Nordmark
dc.contributor.authorKristensen, Tore Andre
dc.contributor.authorBørvik, Tore
dc.contributor.authorHopperstad, Odd Sture
dc.date.accessioned2023-02-17T07:43:00Z
dc.date.available2023-02-17T07:43:00Z
dc.date.created2023-02-13T10:56:07Z
dc.date.issued2023
dc.identifier.citationMaterials Science & Engineering: A, 2023, 864, 16.en_US
dc.identifier.issn0921-5093
dc.identifier.urihttps://hdl.handle.net/11250/3051759
dc.description.abstractSingle-edge notch bending tests are conducted to study the influence of constituent particles on the fracture resistance of aluminum alloys 6061, 6063, and 6110 under high-constraint loading conditions. The alloys are tested in the as-cast state after homogenization and artificial aging to temper T6. Each alloy type was delivered with two different volume fractions of constituent particles to enable a quantitative assessment of its impact on the toughness of these aluminum alloys. One variant corresponds to the commercial alloy, whereas the other variant is tailor made with an increased amount of constituent particles by adding Fe and Si to the commercial alloy. All alloys exhibit a dendritic structure with particles clustered at grain boundaries and dendrite arm boundaries. The increased content of constituent particles in the tailor-made alloys is shown to be purely detrimental for the toughness and reduces relevant fracture energy parameters by more than 50% in the alloys tested herein. In the plane-strain-dominated regions of the specimens where the stress triaxiality is highest, crack propagation was found to take place on grain boundaries and dendrite arm boundaries due to void nucleation, growth, and coalescence from the constituent particles. Differences in toughness between the alloys are primarily related to variations in the content, size, and spacing of the constituent particles. A comparison between the three different alloy types, i.e. 6061, 6063, and 6110, shows that strength affects the toughness, but it does not follow the commonly reported trade-off between strength and ductility.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectConstituent particlesen_US
dc.subjectalloysen_US
dc.subject6xxx aluminumen_US
dc.subjectThree-point bendingen_US
dc.subjectSE(B) testsen_US
dc.subjectToughnessen_US
dc.subjectDuctile fractureen_US
dc.titleInfluence of constituent particles on fracture of aluminum alloys under high-triaxiality loadingen_US
dc.title.alternativeInfluence of constituent particles on fracture of aluminum alloys under high-triaxiality loadingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s). Published by Elsevier B.V.en_US
dc.source.pagenumber16en_US
dc.source.volume864en_US
dc.source.journalMaterials Science & Engineering: Aen_US
dc.identifier.doi10.1016/j.msea.2022.144531
dc.identifier.cristin2125486
dc.relation.projectNorges forskningsråd: 250553en_US
dc.relation.projectNorges forskningsråd: 237885en_US
dc.source.articlenumber144531en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal