Vis enkel innførsel

dc.contributor.authorChen, Jinlei
dc.contributor.authorWang, Sheng
dc.contributor.authorUgalde-Loo, Carlos Ernesto
dc.contributor.authorMing, Wenlong
dc.contributor.authorAdeuyi, Oluwole Daniel
dc.contributor.authorD'Arco, Salvatore
dc.contributor.authorCeballos, Salvador J.
dc.contributor.authorParker, Max Alexander
dc.contributor.authorFinney, Stephen Jon
dc.contributor.authorPitto, Andrea
dc.contributor.authorCirio, Diego
dc.contributor.authorAzpiri, Iñigo
dc.date.accessioned2022-11-18T10:16:08Z
dc.date.available2022-11-18T10:16:08Z
dc.date.created2022-02-17T11:27:12Z
dc.date.issued2022
dc.identifier.issn2079-9292
dc.identifier.urihttps://hdl.handle.net/11250/3032814
dc.description.abstractAlthough the control of modular multi-level converters (MMCs) in high-voltage directcurrent (HVDC) networks has become a mature subject these days, the potential for adverse interactions between different converter controls remains an under-researched challenge attracting the attention from both academia and industry. Even for point-to-point HVDC links (i.e., simple HVDC systems), converter control interactions may result in the shifting of system operating voltages, increased power losses, and unintended power imbalances at converter stations. To bridge this research gap, the risk of multiple cross-over of control characteristics of MMCs is assessed in this paper through mathematical analysis, computational simulation, and experimental validation. Specifically, the following point-to-point HVDC link configurations are examined: (1) one MMC station equipped with a current versus voltage droop control and the other station equipped with a constant power control; and (2) one MMC station equipped with a power versus voltage droop control and the other station equipped with a constant current control. Design guidelines for droop coefficients are provided to prevent adverse control interactions. A 60-kW MMC test-rig is used to experimentally verify the impact of multiple crossing of control characteristics of the DC system configurations, with results verified through software simulation in MATLAB/Simulink using an open access toolbox. Results show that in operating conditions of 650 V and 50 A (DC voltage and DC current), drifts of 7.7% in the DC voltage and of 10% in the DC current occur due to adverse control interactions under the current versus voltage droop and power control scheme. Similarly, drifts of 7.7% both in the DC voltage and power occur under the power versus voltage droop and current control scheme. Keywords: HVDC; MMC; control; interaction; experimental demonstrationen_US
dc.description.abstractDemonstration of Converter Control Interactions in MMC-HVDC Systemsen_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDemonstration of Converter Control Interactions in MMC-HVDC Systemsen_US
dc.title.alternativeDemonstration of Converter Control Interactions in MMC-HVDC Systemsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe Authorsen_US
dc.source.volume11en_US
dc.source.journalElectronicsen_US
dc.source.issue2en_US
dc.identifier.doi10.3390/electronics11020175
dc.identifier.cristin2002784
dc.relation.projectEC/FP7/612748en_US
dc.source.articlenumber175en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal