Vis enkel innførsel

dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorArnaiz del Pozo, Carlos
dc.contributor.authorJiménez Álvaro, Ángel
dc.date.accessioned2022-11-18T08:08:05Z
dc.date.available2022-11-18T08:08:05Z
dc.date.created2022-11-02T14:44:42Z
dc.date.issued2022
dc.identifier.citationEnergy. 2022, 259 1-14.en_US
dc.identifier.issn0360-5442
dc.identifier.urihttps://hdl.handle.net/11250/3032713
dc.description.abstractWhile the effects of ongoing cost reductions in renewables, batteries, and electrolyzers on future energy systems have been extensively investigated, the effects of significant advances in CO2 capture and storage (CCS) technologies have received much less attention. This research gap is addressed via a long-term (2050) energy system model loosely based on Germany, yielding four main findings. First, CCS-enabled pathways offer the greatest benefits in the hydrogen sector, where hydrogen prices can be reduced by two-thirds relative to a scenario without CCS. Second, advanced blue hydrogen technologies can reduce total system costs by 12% and enable negative CO2 emissions due to higher efficiencies and CO2 capture ratios. Third, co-gasification of coal and biomass emerged as an important enabler of these promising results, allowing efficient exploitation of limited biomass resources to achieve negative emissions and limit the dependence on imported natural gas. Finally, CCS decarbonization pathways can practically and economically incorporate substantial shares of renewable energy to reduce fossil fuel dependence. Such diversification of primary energy inputs increases system resilience to the broad range of socio-techno-economic challenges facing the energy transition. In conclusion, balanced blue-green pathways offer many benefits and deserve serious consideration in the global decarbonization effort.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectDecarbonizationen_US
dc.subjectEnergy systems modellingen_US
dc.subjectTechno-economic assessmenten_US
dc.subjectBlue hydrogenen_US
dc.subjectCO2 capture and storageen_US
dc.titleSystem-friendly process design: Optimizing blue hydrogen production for future energy systemsen_US
dc.title.alternativeSystem-friendly process design: Optimizing blue hydrogen production for future energy systemsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authors. Published by Elsevier Ltd.en_US
dc.source.pagenumber1-14en_US
dc.source.volume259en_US
dc.source.journalEnergyen_US
dc.identifier.doi10.1016/j.energy.2022.124954
dc.identifier.cristin2068167
dc.source.articlenumber124954en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal