Vis enkel innførsel

dc.contributor.authorSaeed, Muhammad Zahid
dc.contributor.authorHafner, Armin
dc.contributor.authorThatte, Azam
dc.contributor.authorGabrielii, Cecilia H
dc.date.accessioned2022-11-03T10:03:03Z
dc.date.available2022-11-03T10:03:03Z
dc.date.created2022-10-14T10:57:25Z
dc.date.issued2022
dc.identifier.citation15th IIR-Gustav Lorentzen Conference on Natural Refrigerants - GL2022 - Proceedings - Trondheim, Norway, June 13-15th 2022en_US
dc.identifier.isbn978-2-36215-045-6
dc.identifier.issn0151-1637
dc.identifier.urihttps://hdl.handle.net/11250/3029806
dc.description.abstractNatural refrigerant CO2 has become a viable choice for refrigeration units. The CO2 systems are working efficiently on land-based facilities, and their demand is increasing for offshore applications, e.g., cruise ships and fishing vessels, due to their environment-friendly nature and compactness. The investigated application of the CO2 system in this work is a single-stage system for air conditioning and a two-stage system for provision refrigeration at high heat rejection temperatures. The CO2 transcritical cycle allows operating in higher ambient temperatures and in a colder climate with significant heat recovery. However, the system efficiency decreases in higher ambient conditions due to the high-pressure ratio and expansion losses. Therefore, ejectors are implemented to boost the cycle efficiency at high heat rejection temperature conditions. The pressure exchanger (PX) device recently came up and claimed to be an option to recover expansion work in CO2 systems. PX is already in use for reverse osmosis (RO) desalination units to recover pressure work from the high pressure reject concentrate to low-pressure seawater. This work theoretically investigates the implementation of a CO2-PX for transcritical CO2 systems combined with ejectors and compressors. The energy efficiency of alternative system configurations is evaluated for various operating conditions.en_US
dc.description.abstractSimultaneous implementation of rotary pressure exchanger and ejectors for CO2 refrigeration systemen_US
dc.language.isoengen_US
dc.publisherIIRen_US
dc.relation.ispartof15th IIR-Gustav Lorentzen Conference on Natural Refrigerants - GL2022 - Proceedings - Trondheim, Norway, June 13-15th 2022
dc.relation.ispartofseriesScience et technique du froid;
dc.titleSimultaneous implementation of rotary pressure exchanger and ejectors for CO2 refrigeration systemen_US
dc.title.alternativeSimultaneous implementation of rotary pressure exchanger and ejectors for CO2 refrigeration systemen_US
dc.typeChapteren_US
dc.typePeer revieweden_US
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright © 2022 IIF/IIR. Published with the authorization of the International Institute of Refrigeration (IIR). The conference proceedings of GL2022 are available in the Fridoc database on the IIR website at www.iifiir.orgen_US
dc.identifier.cristin2061430
dc.relation.projectNorges forskningsråd: 308779en_US
dc.source.articlenumber0130en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel