Vis enkel innførsel

dc.contributor.authorDias, M.
dc.contributor.authorMagalhães, S.
dc.contributor.authorAntão, F.
dc.contributor.authorda Silva, Silva
dc.contributor.authorGonçalves, A.P.
dc.contributor.authorAlmeida Carvalho, Patricia
dc.contributor.authorCorreia, J.B.
dc.contributor.authorGalatanu, A.
dc.contributor.authorAlves, E.
dc.date.accessioned2022-10-26T12:30:44Z
dc.date.available2022-10-26T12:30:44Z
dc.date.created2022-09-28T11:03:33Z
dc.date.issued2022
dc.identifier.citationNuclear Instruments and Methods in Physics Reseach B. 2022, 529 49-55.en_US
dc.identifier.issn0168-583X
dc.identifier.urihttps://hdl.handle.net/11250/3028449
dc.description.abstractA CuCrFeTiV high entropy alloy was prepared and irradiated with swift heavy ions in order to check its adequacy for use as a thermal barrier in future nuclear fusion reactors. The alloy was prepared from the elemental powders by ball milling, followed by consolidation by spark plasma sintering at 1178 K and 65 MPa. The samples were then irradiated at room temperature with 300 keV Ar+ ions with fluences in the 3 × 1015 to 3 × 1018 Ar+/cm2 range to mimic neutron-induced damage accumulation during a duty cycle of a fusion reactor. Structural changes were investigated by X-ray diffraction, and scanning electron microscopy and scanning transmission electron microscopy, both coupled with X-ray energy dispersive spectroscopy. Surface irradiation damage was detected for high fluences (3 × 1018 Ar+/cm2) with formation of blisters of up to 1 μm in diameter. Cross-sectional scanning transmission electron microscopy showed the presence of intergranular cavities only in the sample irradiated with 3 × 1018 Ar+/cm2, while all irradiation experiments produced intragranular nanometric-sized bubbles with increased density for higher Ar+ fluence. The Williamson-Hall method revealed a decrease in the average crystallite size and an increase in residual strain with increasing fluence, consistent with the formation of Ar+ bubbles at the irradiated surface.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.subjectWilliamson-Hall methoden_US
dc.subjectStrainen_US
dc.subjectMicrostructuresen_US
dc.subjectInterlayeren_US
dc.subjectHigh entropy alloysen_US
dc.titleDamage threshold of CuCrFeTiV high entropy alloys for nuclear fusion reactorsen_US
dc.title.alternativeDamage threshold of CuCrFeTiV high entropy alloys for nuclear fusion reactorsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authors. Published by Elsevier B.Ven_US
dc.source.pagenumber49-55en_US
dc.source.volume529en_US
dc.source.journalNuclear Instruments and Methods in Physics Reseach Ben_US
dc.identifier.doi10.1016/j.nimb.2022.09.003
dc.identifier.cristin2056262
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal