Vis enkel innførsel

dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorRuhnau, Oliver
dc.contributor.authorHirth, Lion
dc.date.accessioned2022-10-10T10:32:02Z
dc.date.available2022-10-10T10:32:02Z
dc.date.created2021-02-11T09:58:19Z
dc.date.issued2020
dc.identifier.citationInternational Journal of Hydrogen Energy. 2020, 46 (1), 169-188.en_US
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11250/3025055
dc.description.abstractThe hydrogen economy is currently experiencing a surge in attention, partly due to the possibility of absorbing variable renewable energy (VRE) production peaks through electrolysis. A fundamental challenge with this approach is low utilization rates of various parts of the integrated electricity-hydrogen system. To assess the importance of capacity utilization, this paper introduces a novel stylized numerical energy system model incorporating the major elements of electricity and hydrogen generation, transmission and storage, including both “green” hydrogen from electrolysis and “blue” hydrogen from natural gas reforming with CO2 capture and storage (CCS). Concurrent optimization of all major system elements revealed that balancing VRE with electrolysis involves substantial additional costs beyond reduced electrolyzer capacity factors. Depending on the location of electrolyzers, greater capital expenditures are also required for hydrogen pipelines and storage infrastructure (to handle intermittent hydrogen production) or electricity transmission networks (to transmit VRE peaks to electrolyzers). Blue hydrogen scenarios face similar constraints. High VRE shares impose low utilization rates of CO2 capture, transport and storage infrastructure for conventional CCS, and of hydrogen transmission and storage infrastructure for a novel process (gas switching reforming) that enables flexible power and hydrogen production. In conclusion, all major system elements must be considered to accurately reflect the costs of using hydrogen to integrate higher VRE shares.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectVariable renewable energyen_US
dc.subjectCO2 capture and storageen_US
dc.subjectDecarbonizationen_US
dc.subjectEnergy system modelen_US
dc.subjectHydrogen economyen_US
dc.titleOn capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systemsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Author(s). Published by Elsevier Ltden_US
dc.source.pagenumber169-188en_US
dc.source.volume46en_US
dc.source.journalInternational Journal of Hydrogen Energyen_US
dc.source.issue1en_US
dc.identifier.doi10.1016/j.ijhydene.2020.09.197
dc.identifier.cristin1888746
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal