Vis enkel innførsel

dc.contributor.authorHammer, Morten
dc.contributor.authorDeng, Han
dc.contributor.authorAustegard, Anders
dc.contributor.authorLog, Alexandra Metallinou
dc.contributor.authorMunkejord, Svend Tollak
dc.date.accessioned2022-10-05T09:22:09Z
dc.date.available2022-10-05T09:22:09Z
dc.date.created2022-08-12T10:49:46Z
dc.date.issued2022
dc.identifier.issn0301-9322
dc.identifier.urihttps://hdl.handle.net/11250/3023978
dc.description.abstractIn order to accelerate the deployment of capture and storage (CCS), engineers need experimentally validated models, among other things, to predict the mass flow rate in process equipment and flow restrictions like valves, nozzles and orifices. There are few available, relevant data for choked flow in such geometries. To amend the situation, in this work, we report on six pipe-depressurization experiments from a pressure of 12 MPa and a temperature of 25 °C through three sizes (4.5, 9.0 and 12.7 mm) of orifices and nozzles. The results indicate that for the present cases, the choke point is at a non-equilibrium state. In order to predict quasi-steady choked flow in restrictions, the homogeneous equilibrium model (HEM) and the Henry–Fauske (HF) model are commonly used. The HEM often underpredicts the mass flow rate because it does not account for delayed phase transition. Here we develop a delayed HEM (D-HEM) where evaporation starts at the superheat limit described using classical nucleation theory. We then employ the HEM, D-HEM, and HF model in 1D CFD pipe simulations to describe the outflow of depressurization experiments and we also compare with experimental data for converging–diverging nozzles. In the CFD simulations, HF gave the best results, while HEM consistently underpredicted the mass flux. For the nozzle calculations, we found D-HEM to be the best model with a relative absolute error of 2.5 % for the predicted mass flux.en_US
dc.description.abstractExperiments and modelling of choked flow of CO2 in orifices and nozzlesen_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleExperiments and modelling of choked flow of CO2 in orifices and nozzlesen_US
dc.title.alternativeExperiments and modelling of choked flow of CO2 in orifices and nozzlesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holderThe Authorsen_US
dc.source.volume156en_US
dc.source.journalInternational Journal of Multiphase Flowen_US
dc.identifier.doi10.1016/j.ijmultiphaseflow.2022.104201
dc.identifier.cristin2042633
dc.relation.projectNorges forskningsråd: 257579en_US
dc.relation.projectNorges forskningsråd: 225868en_US
dc.source.articlenumber104201en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.fulltextpreprint
cristin.fulltextpreprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail
Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal