Vis enkel innførsel

dc.contributor.authorGrande, Carlos Adolfo
dc.contributor.authorBlom, Richard
dc.contributor.authorMiddelkoop, Vesna
dc.contributor.authorMatras, Dorota
dc.contributor.authorVamvakeros, Antonis
dc.contributor.authorJacques, Simon D.M.
dc.contributor.authorBeale, Andrew M.
dc.contributor.authorMichiel, Marco Di
dc.contributor.authorAndreassen, Kari Anne
dc.contributor.authorBouzga, Aud Mjærum
dc.date.accessioned2022-09-20T06:51:40Z
dc.date.available2022-09-20T06:51:40Z
dc.date.created2020-12-03T15:29:26Z
dc.date.issued2020
dc.identifier.citationChemical Engineering Journal. 2020, 402, 1-9.en_US
dc.identifier.issn1385-8947
dc.identifier.urihttps://hdl.handle.net/11250/3019009
dc.description.abstractStructuring MOF materials is a fundamental step towards their commercialization. Herein we report intensive characterization of 3D-printed UTSA-16 monoliths, facilitated by the development of a new non-aqueous ink formulation, employing hydroxypropyl cellulose and boehmite to adjust the rheology of the ink. What makes this formulation and printing process different from the printed adsorbents and catalysts published previously, is that the resulting structures in this work were not sintered. The presence of the binder matrix not only produced the physical properties for printability but also ensured a homogeneous dispersion of UTSA-16 in the structures, as well as gas adsorption characteristics. The monoliths were tested for the adsorption of different gases (N2, CH4, CO2 and H2O) in order to apply them into separation processes that contribute to defossilizing energy and fuels production. Water is strongly adsorbed in this material (~14 mol/kg at 293 K) and is competing with CO2 for adsorption sites. Breakthrough curves showed that the retention time of CO2 decreases significantly when the feed stream is saturated with water. In this study, synchrotron XRD-CT data were collected in situ, in a non-destructive way, and phase distribution maps were reconstructed to, for the first time, gain insight into the spatial and temporal evolution of the UTSA-16 containing phases in the operating 3D printed monolith during the exposure to CO2.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectIn situ operando XRD-CTen_US
dc.subjectShapingen_US
dc.subjectDirect write 3D printingen_US
dc.subjectWater adsorptionen_US
dc.subjectCarbon dioxideen_US
dc.titleMultiscale investigation of adsorption properties of novel 3D printed UTSA-16 structuresen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 The Authors. Published by Elsevier B.V.en_US
dc.source.pagenumber9en_US
dc.source.volume402en_US
dc.source.journalChemical Engineering Journalen_US
dc.identifier.doi10.1016/j.cej.2020.126166
dc.identifier.cristin1855914
dc.relation.projectNorges forskningsråd: 233818en_US
dc.relation.projectNorges forskningsråd: 193816en_US
dc.source.articlenumber126166en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal