Vis enkel innførsel

dc.contributor.authorSolheim, Asbjørn
dc.date.accessioned2022-09-15T13:42:47Z
dc.date.available2022-09-15T13:42:47Z
dc.date.created2021-03-22T11:30:55Z
dc.date.issued2021
dc.identifier.citationLight Metals 2021, pp 511–518en_US
dc.identifier.issn2367-1181
dc.identifier.urihttps://hdl.handle.net/11250/3018117
dc.descriptionSolheim, A. (2021). On the Feasibility of Using Low-Melting Bath to Accommodate Inert Anodes in Aluminium Electrolysis Cells. In: Perander, L. (eds) Light Metals 2021. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-030-65396-5_72en_US
dc.description.abstractInert anodes for aluminium production can be made of ceramics, metals, or a mixture of those (cermets). Regardless of the type of anode, the surface will be an oxide. With high enough anode potential, the surface oxide will be decomposed upon formation of the corresponding fluoride, eventually leading to a catastrophic defect. The reversible voltage for decomposition was calculated for anode materials based on Ni, Fe, Cu, Co, and Cr in terms of the activities of alumina and aluminium fluoride at 960 °C and at 800 °C. Cu is the most promising candidate, when based on the decomposition voltage alone. It was found that the risk of failure was higher at low temperature, partly because low-melting baths have high activity of aluminium fluoride, and partly because it will be challenging to maintain high enough activity of alumina, even in a “slurry cell” where the bath consists of a suspension of tiny alumina particles. Based on a simplified model for the conditions inside the diffusion layer at the anode, it was estimated that the alumina particles in the slurry cannot be larger than 5–10 microns.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/deed.no*
dc.titleOn the Feasibility of Using Low-Melting Bath to Accommodate Inert Anodes in Aluminium Electrolysis Cellsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holderThis is a post-peer-review, pre-copyedit version of an article published in Light Metals 2021, Part of the The Minerals, Metals & Materials Series book series (MMMS). The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-65396-5_72en_US
dc.source.pagenumber511–518en_US
dc.source.journalThe Minerals, Metals & Materials Seriesen_US
dc.identifier.doi10.1007/978-3-030-65396-5_72
dc.identifier.cristin1899853
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Attribution-NonCommercial-NoDerivatives 4.0 Internasjonal