Vis enkel innførsel

dc.contributor.authorRadmanesh, Farzaneh
dc.contributor.authorPilz, Monika
dc.contributor.authorAnsaloni, Luca
dc.contributor.authorPeters, Thijs
dc.contributor.authorLouradour, Eric
dc.contributor.authorvan Veen, Henk
dc.contributor.authorHøvik, Dag
dc.contributor.authorHempenius, Mark A.
dc.contributor.authorBenes, Nieck E.
dc.date.accessioned2022-09-12T07:45:17Z
dc.date.available2022-09-12T07:45:17Z
dc.date.created2021-09-01T16:17:39Z
dc.date.issued2021
dc.identifier.citationJournal of Membrane Science. 2021, 637 (119524), .en_US
dc.identifier.issn0376-7388
dc.identifier.urihttps://hdl.handle.net/11250/3017103
dc.description.abstractPolyPOSS-imide membranes are promising for separating H2 from larger molecules (CO2, N2, CH4) at temperatures up to 300 °C. Their fabrication involves two steps: interfacial polymerization of POSS and 6FDA, followed by thermal imidization. This work provides a systematic study of the effects of cations on membrane properties and performance. For this, two distinct POSS molecules were used: functionalized with -NH3+Cl− or, so far unexplored, -NH2. The ammonium groups are partially deprotonated by using three different bases, LiOH, NaOH, and KOH. We demonstrate that the introduced cations affect the film thickness but not the molecular composition of the polyamic acid. All polyamic acids can be imidized, but the cations reduce the imidization kinetics as well as the loss of organic crosslinkers. For flat disc membranes, at 200 °C, the absence of cations results in comparable permeability combined with higher selectivity for H2/N2. This, and the possibility to discard adding a base, motivated a scale-up study of the new POSS. For tubular membranes, much higher ideal and mixed gas selectivities are found than for membranes where NaOH was added. Results indicate that the new route allows more reproducible production of defect free membranes and has potential for larger-scale polyPOSSimide fabrication.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectMembranfiltreringen_US
dc.subjectMembrane filtrationen_US
dc.subjectMembraneren_US
dc.subjectMembranesen_US
dc.subjectInterfacial polymerizationen_US
dc.subjectPOSSen_US
dc.subjectThermal stabilityen_US
dc.subjectPolyimideen_US
dc.subjectGas separationen_US
dc.titleComparing amine- and ammonium functionalized silsesquioxanes for large scale synthesis of hybrid polyimide high-temperature gas separation membranesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2021 The Authors. Published by Elsevier B.V.en_US
dc.subject.nsiVDP::Nanoteknologi: 630en_US
dc.subject.nsiVDP::Nanotechnology: 630en_US
dc.source.pagenumber11en_US
dc.source.volume637en_US
dc.source.journalJournal of Membrane Scienceen_US
dc.identifier.doi10.1016/j.memsci.2021.119524
dc.identifier.cristin1930586
dc.relation.projectEC/H2020/760899en_US
dc.source.articlenumber119524en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal