Vis enkel innførsel

dc.contributor.authorBenali, Benyamine
dc.contributor.authorFøyen, Tore Lyngås
dc.contributor.authorAlcorn, Zachary Paul
dc.contributor.authorHaugen, Malin
dc.contributor.authorGauteplass, Jarand
dc.contributor.authorKovscek, Anthony R.
dc.contributor.authorFernø, Martin
dc.date.accessioned2022-08-05T09:18:52Z
dc.date.available2022-08-05T09:18:52Z
dc.date.created2022-02-18T11:03:45Z
dc.date.issued2022
dc.identifier.citationInternational Journal of Greenhouse Gas Control. 2022, 114 1-11.en_US
dc.identifier.issn1750-5836
dc.identifier.urihttps://hdl.handle.net/11250/3010301
dc.description.abstractThe flow of CO2 foam for mobility control in porous media is dictated by the foam texture, or bubble density, which is commonly expressed as the number of bubbles per unit of flowing gas. In most high-pressure laboratory studies of foam in porous media, the local foam texture cannot be determined due to opaque flow systems. Here, we unlock real-time foam texture dynamics at high pressure (100 bar) by utilizing a realistic pore network with an extended field of view. We identified snap-off as the dominant foam generation mechanism, with additional fining of foam texture caused by backward foam propagation. Foam coalescence during continuous CO2 injection resulted in large gas channels parallel to the general flow direction that reduced the overall foam apparent viscosity. A large fraction of the CO2 foam remained trapped ( > 0.97) and stationary in pores to divert CO2 flow and increase sweep efficiency. The gas mobility was calculated from the fraction of trapped bubbles at the pore-scale, and the apparent foam viscosity agreed with similar injection test performed at core-scale. Hence, improved understanding of CO2 foam texture evolution () can strengthen the validation of numerical foam models for upscaling of flow phenomena, instrumental in the development of field scale implementation of CO2 foam for in carbon utilization and storage applications.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectQuantitative pore-level analysisen_US
dc.subjectCCUSen_US
dc.subjectFoam textureen_US
dc.subjectMicromodelsen_US
dc.subjectCO2 foamen_US
dc.titlePore-scale bubble population dynamics of CO2-foam at reservoir pressureen_US
dc.title.alternativePore-scale bubble population dynamics of CO2-foam at reservoir pressureen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s). Published by Elsevier Ltden_US
dc.source.pagenumber1-11en_US
dc.source.volume114en_US
dc.source.journalInternational Journal of Greenhouse Gas Controlen_US
dc.identifier.doi10.1016/j.ijggc.2022.103607
dc.identifier.cristin2003239
dc.relation.projectNorges forskningsråd: 249742en_US
dc.relation.projectNorges forskningsråd: 268216en_US
dc.relation.projectNorges forskningsråd: 294886en_US
dc.relation.projectNorges forskningsråd: 301201en_US
dc.source.articlenumber103607en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal