Vis enkel innførsel

dc.contributor.authorZhang, Baokun
dc.contributor.authorDeng, Junjun
dc.contributor.authorWang, Wenbo
dc.contributor.authorLi, Lantian
dc.contributor.authorWang, Zhenpo
dc.contributor.authorWang, Shuo
dc.contributor.authorGuidi, Giuseppe
dc.date.accessioned2022-07-21T07:25:53Z
dc.date.available2022-07-21T07:25:53Z
dc.date.created2022-05-19T09:12:46Z
dc.date.issued2022
dc.identifier.issn2577-4212
dc.identifier.urihttps://hdl.handle.net/11250/3007439
dc.description.abstractThermal design is particularly important for high-power and compact inductive power transfer (IPT) systems having limited surface area for heat dissipation. This paper presents the thermal design and optimization of a 30 kW IPT system for electric vehicles. An improved analytical thermal model with high accuracy for liquid-cooled magnetic couplers was proposed by using thermal network method (TNM). It considers heating components as well as thermal interface materials. Then multi-objective thermal optimization procedure of the liquid-cooled magnetic coupler was conducted with the presented model. Tradeoffs among temperature rise, weight, and cost were discussed and an optimized solution was selected. The thermal FE models were established and compared with the thermal networks. Subsequently, the thermal performance of the system at different power levels and misaligned conditions was analyzed. The experimental setup based on Fiber Bragg grating sensors was built, and the prototypes were tested with an output power of around 28 kW. The error of stable temperature between the experiment and the prediction was less than 10% at the measurement points, verifying the thermal models. The proposed thermal models and optimization procedure accelerate the thermal design of IPT systems, towards higher power density.en_US
dc.description.abstractMulti-Objective Thermal Optimization Based on Improved Analytical Thermal Models of a 30 kW IPT System for EVsen_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.titleMulti-Objective Thermal Optimization Based on Improved Analytical Thermal Models of a 30 kW IPT System for EVsen_US
dc.title.alternativeMulti-Objective Thermal Optimization Based on Improved Analytical Thermal Models of a 30 kW IPT System for EVsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.en_US
dc.source.journalIEEE Transactions on Transportation Electrificationen_US
dc.identifier.doi10.1109/TTE.2022.3175806
dc.identifier.cristin2025437
dc.relation.projectNorges forskningsråd: 304213en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel