Vis enkel innførsel

dc.contributor.authorPruvost, Florian
dc.contributor.authorCloete, Schalk Willem Petrus
dc.contributor.authorCloete, Jan Hendrik
dc.contributor.authorZaabout, Abdelghafour
dc.date.accessioned2022-06-17T10:09:49Z
dc.date.available2022-06-17T10:09:49Z
dc.date.created2022-01-12T06:16:46Z
dc.date.issued2022
dc.identifier.citationEnergy Conversion and Management. 2022, 253, 1-11.en_US
dc.identifier.issn0196-8904
dc.identifier.urihttps://hdl.handle.net/11250/2999272
dc.description.abstractSteam methane reforming with CO2 capture (blue hydrogen) and water electrolysis based on renewable electricity (green hydrogen) are commonly assumed to be the main supply options in a future hydrogen economy. However, another promising method is emerging in the form of natural gas pyrolysis (turquoise hydrogen) with pure carbon as a valuable by-product. To better understand the potential of turquoise hydrogen, this study presents a techno-economic assessment of a molten salt pyrolysis process. Results show that moderate reactor pressures around 12 bar are optimal, and that reactor size must be limited by accepting reactor performance well below the thermodynamic equilibrium. Despite this challenge stemming from slow reaction rates, the simplicity of the molten salt pyrolysis process delivers high efficiencies and promising economics. In the long-term, carbon could be produced for 200–300 €/ton, granting access to high-volume markets in the metallurgical and chemical process industries. Such a scenario makes turquoise hydrogen a promising alternative to blue hydrogen in regions with public resistance to CO2 transport and storage. In the medium-term, expensive first-of-a-kind plants could produce carbon around 400 €/ton if hydrogen prices are set by conventional blue hydrogen production. Pure carbon at this cost level can access smaller high-value markets such as carbon anodes and graphite, ensuring profitable operation even for first movers. In conclusion, the economic potential of molten salt pyrolysis is high and further demonstration and scale-up efforts are strongly recommended.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjecttechno-economic assessmenten_US
dc.subjectHydrogenen_US
dc.subjectNatural gas pyrolysisen_US
dc.subjectMolten salt pyrolysisen_US
dc.titleTechno-Economic assessment of natural gas pyrolysis in molten saltsen_US
dc.title.alternativeTechno-Economic assessment of natural gas pyrolysis in molten saltsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Authors. Published by Elsevier Ltden_US
dc.source.pagenumber10en_US
dc.source.volume253en_US
dc.source.journalEnergy Conversion and Managementen_US
dc.identifier.doi10.1016/j.enconman.2021.115187
dc.identifier.cristin1978961
dc.source.articlenumber115187en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal