Vis enkel innførsel

dc.contributor.authorWan, Di
dc.contributor.authorHagen, Anette Brocks
dc.contributor.authorViespoli, Luigi Mario
dc.contributor.authorJohanson, Audun
dc.contributor.authorBerto, Filippo
dc.contributor.authorAlvaro, Antonio
dc.date.accessioned2022-06-07T10:16:13Z
dc.date.available2022-06-07T10:16:13Z
dc.date.created2022-01-14T15:14:37Z
dc.date.issued2022
dc.identifier.citationMaterials Science and Engineering: A, 2022, 835, 142654, 1-10en_US
dc.identifier.issn0921-5093
dc.identifier.urihttps://hdl.handle.net/11250/2997656
dc.description.abstractDistribution of electrical energy through subsea power cables has an increasingly important role in the renewable power generation. The majority of the subsea cables uses copper (Cu) as a conductor material. Cables suspended from sea level to sea floor are subjected to both static and cyclic loads that can introduce microstructural damage due to fatigue, creep and their interaction. In addition, since the manufacturing process of the stranded conductor results in Cu-materials with superficial irregularities and metallurgical anisotropy, the material performances need to be carefully addressed in order to reliably assess the wires life. In order to provide a deeper insight into the occurring damage mechanisms, monotonic and cyclic tests of micro-sized Cu tensile specimens were carried out using in-situ micromechanical testing, inside a scanning electron microscopy (SEM) equipped with an electron backscatter diffraction. Tensile and cyclic loading behavior are discussed in correlation with the damage mechanisms observed directly and post-mortem. The twin boundary fraction in the microstructure is found to be linked to the deformation status, and thus can potentially be used as an indicator for predicting the remaining life of the material under service conditions.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectElectron channeling contrast imaging (ECCI)en_US
dc.subjectElectron backscattered diffraction (EBSD)en_US
dc.subjectScanning electron microscopy (SEM)en_US
dc.subjectCyclic loadingen_US
dc.subjectTensile testen_US
dc.subjectCopperen_US
dc.titleIn-situ tensile and fatigue behavior of electrical grade Cu alloy for subsea cablesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s). Published by Elsevier B.Ven_US
dc.source.pagenumber10en_US
dc.source.volume835en_US
dc.source.journalMaterials Science & Engineering: Aen_US
dc.identifier.doi10.1016/j.msea.2022.142654
dc.identifier.cristin1981424
dc.source.articlenumber142654en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal