Vis enkel innførsel

dc.contributor.authorLin, Meichao
dc.contributor.authorYu, Haiyang
dc.contributor.authorWang, Xu
dc.contributor.authorwang, ruijun
dc.contributor.authorDing, Yu
dc.contributor.authorAlvaro, Antonio
dc.contributor.authorOlden, Vigdis
dc.contributor.authorHe, Jianying
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2022-05-31T07:22:58Z
dc.date.available2022-05-31T07:22:58Z
dc.date.created2022-03-23T09:50:54Z
dc.date.issued2022
dc.identifier.citationInternational Journal of Hydrogen Energy. 2022, 47 (39), 17479-17493.en_US
dc.identifier.issn0360-3199
dc.identifier.urihttps://hdl.handle.net/11250/2996953
dc.description.abstractHydrogen induced failure under uniaxial tension is simulated in a duplex stainless steel considering microstructural feature of the material. There are three key ingredients in the modelling approach: image processing and finite element representation of the experimentally observed microstructure, stress driven hydrogen diffusion and diffusion coupled cohesive zone modelling of fracture considering mixed failure mode. The microstructure used as basis for the modeling work is obtained from specimens cut in the transverse and longitudinal directions. It is found that the microstructure significantly influences hydrogen diffusion and fracture. The austenite phase is polygonal and randomly distributed in the transverse direction, where a larger effective hydrogen diffusion coefficient and a lower hydrogen fracture resistance is found, compared to the specimen in the longitudinal direction, where the austenite phase is slender and laminated. This indicates that the proper design and control of the austenite phase help improve hydrogen resistance of duplex stainless steel. The strength of the interface in the shear direction is found to dominate the fracture mode and initiation site, which reveals the importance of considering mixed failure mode and calibrating the hydrogen induced strength reduction in shear.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectMicrostructureen_US
dc.subjectDuplex stainless steelen_US
dc.subjectCohesive zone modelen_US
dc.subjectHydrogen embrittlementen_US
dc.titleA microstructure informed and mixed-mode cohesive zone approach to simulating hydrogen embrittlementen_US
dc.title.alternativeA microstructure informed and mixed-mode cohesive zone approach to simulating hydrogen embrittlementen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 The Author(s). Published by Elsevier Ltden_US
dc.source.pagenumber17479-17493en_US
dc.source.volume47en_US
dc.source.journalInternational Journal of Hydrogen Energyen_US
dc.source.issue39en_US
dc.identifier.doi10.1016/j.ijhydene.2022.03.226
dc.identifier.cristin2011886
dc.relation.projectNorges forskningsråd: 294689en_US
dc.relation.projectNorges forskningsråd: 294739en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal