Vis enkel innførsel

dc.contributor.authorMauroy, Henrik
dc.contributor.authorKlyukin, Konstantin
dc.contributor.authorShelyapina, Marina G.
dc.contributor.authorKeen, David A.
dc.contributor.authorThøgersen, Annett
dc.contributor.authorHauback, Bjørn
dc.contributor.authorSørby, Magnus Helgerud
dc.date.accessioned2022-05-27T08:31:06Z
dc.date.available2022-05-27T08:31:06Z
dc.date.created2020-05-11T09:09:51Z
dc.date.issued2020
dc.identifier.citationEnergies. 2020, 13 (8), .en_US
dc.identifier.issn1996-1073
dc.identifier.urihttps://hdl.handle.net/11250/2996356
dc.description.abstractTi-V-based body-centered cubic (BCC) alloys have potential for large-scale hydrogen storage if expensive vanadium is substituted with much cheaper Fe-containing ferrovanadium. Use of ferrovanadium reduces the alloys’ hydrogen storage capacity. This is puzzling since the amount of Fe is low and hydrogen atoms are accommodated in interstitial sites which are partly coordinated by Fe in many intermetallic compounds. The present work is aimed at finding a structural explanation for Fe-induced capacity loss in Ti-V alloys. Since such alloys and their hydrides are highly disordered without long-range occupational order of the different metal species, it was necessary to employ a technique which is sensitive to local structure. Neutron total scattering coupled with reverse Monte Carlo modelling was thus employed to elucidate short-range atomic correlations in Ti0.63V0.27Fe0.10D1.73 from the pair distribution function. It was found that Fe atoms form clusters and that the majority of the vacant interstitial sites are within these clusters. These clusters take the same face-centered cubic structure as the Ti-V matrix in the deuteride and thus they are not simply unreacted Fe which has a BCC structure. The presence of Fe clusters is confirmed by transmission electron microscopy. Density functional theory calculations indicate that the clustering is driven by thermodynamics.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.subjectMonte Carlo modellingen_US
dc.subjectreverseen_US
dc.subjectneutron total scatteringen_US
dc.subjectBCC alloysen_US
dc.subjecthydrogen storageen_US
dc.titleShort-Range Structure of Ti0.63V0.27Fe0.10D1.73 from Neutron Total Scattering and Reverse Monte Carlo Modellingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en_US
dc.source.pagenumber14en_US
dc.source.volume13en_US
dc.source.journalEnergiesen_US
dc.source.issue8en_US
dc.identifier.doi10.3390/en13081947
dc.identifier.cristin1810176
dc.relation.projectNorges forskningsråd: 218409en_US
dc.source.articlenumber1947en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal