Vis enkel innførsel

dc.contributor.authorThøgersen, Annett
dc.contributor.authorJensen, Ingvild Julie Thue
dc.contributor.authorGraff, Joachim Seland
dc.contributor.authorRingdalen, Inga Gudem
dc.contributor.authorAlmeida Carvalho, Patricia
dc.contributor.authorMehl, Torbjørn
dc.contributor.authorZhu, Junjie
dc.contributor.authorBurud, Ingunn
dc.contributor.authorOlsen, Espen
dc.contributor.authorSøndenå, Rune
dc.date.accessioned2022-05-04T12:58:45Z
dc.date.available2022-05-04T12:58:45Z
dc.date.created2022-04-27T19:16:42Z
dc.date.issued2022
dc.identifier.citationJournal of Applied Physics. 2022, 131(14).en_US
dc.identifier.issn0021-8979
dc.identifier.urihttps://hdl.handle.net/11250/2994219
dc.description.abstractDefects in high performance multi-crystalline silicon wafers can be detrimental to the lifetime of the solar cell. It is, therefore, important to study and understand the underlying structure and chemical elements present at these defective areas in order to suppress them. The underlying cause of the D-band emission line "veryintenseD3" (VID3) has not yet been understood, although many theories have been proposed. In this paper, we have investigated the underlying causes of the d-band emission peak VID3 by hyperspectral photoluminescence imaging, scanning electron microscopy, electron backscatter diffraction, scanning transmission electron microscopy, and density functional theory (DFT) to understand the defect structure in areas of a VID3 emission peak in more detail. We found a high VID3 peak intensity at sub-grain and Σ3 twin boundaries bordering to grains with a small misorientation, which suggests higher stress in these regions. Defects close to the twin boundary indicate a light element dopant in the area, such as oxygen. DFT calculations show that oxygen is prone to segregate to this boundary.en_US
dc.language.isoengen_US
dc.publisherAIP Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleInvestigation of veryintenseD3-band emission in multi-crystalline silicon wafers using electron microscopy and hyperspectral photoluminescence imagingen_US
dc.title.alternativeInvestigation of veryintenseD3-band emission in multi-crystalline silicon wafers using electron microscopy and hyperspectral photoluminescence imagingen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.rights.holder© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0087119en_US
dc.source.pagenumber8en_US
dc.source.volume131en_US
dc.source.journalJournal of Applied Physicsen_US
dc.source.issue14en_US
dc.identifier.doi10.1063/5.0087119
dc.identifier.cristin2019649
dc.relation.projectNorges forskningsråd: 280909en_US
dc.relation.projectNorges forskningsråd: 197405en_US
dc.source.articlenumber145703en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal