Vis enkel innførsel

dc.contributor.authorBehera, Aroop
dc.contributor.authorHarris, Charles
dc.contributor.authorPete, Douglas
dc.contributor.authorDelker, Collin
dc.contributor.authorVullum, Per Erik
dc.contributor.authorBenthem, Marta
dc.contributor.authorKoybasi, Ozhan
dc.contributor.authorTaniguchi, Takashi
dc.contributor.authorWatanabe, Kenji
dc.contributor.authorBelle, Branson
dc.contributor.authorDas, Suprem
dc.date.accessioned2022-04-05T11:43:08Z
dc.date.available2022-04-05T11:43:08Z
dc.date.created2021-09-08T08:55:50Z
dc.date.issued2021
dc.identifier.citationACS Applied Electronic Materials. 2021, 3 (9), 4126-4134.en_US
dc.identifier.issn2637-6113
dc.identifier.urihttps://hdl.handle.net/11250/2989935
dc.description.abstractTwo-dimensional heterostructure field-effect transistors (2D-HFETs) with one-dimensional electrical contacts to atomically thin channels have recently shown great device performance, such as reduced contact resistance, leading to ballistic transport and enhanced carrier mobility. While a number of low-frequency noise studies exists on bare graphene devices supported on silicon dioxide gate insulators with surface contacts, such studies in heterostructure devices comprising epitaxial graphene on hexagonal boron nitride (hBN) with edge contacts are extremely limited. In this article, we present a systematic, temperature-dependent study of electrical transport and low-frequency noise in edge-contacted high-mobility HFET with a single atomic-layer graphene channel encapsulated by hBN and demonstrate ultralow noise with a Hooge parameter of ≈10–5. By combining measurements and modeling based on underlying microscopic scattering mechanisms caused by charge carriers and phonons, we directly correlate the high-performance, temperature-dependent transport behavior of this device with the noise characteristics. Our study provides a pathway towards engineering low-noise graphene-based high-performance 2D-FETs with one-dimensional edge contacts for applications such as digital electronics and chemical/biological sensing.en_US
dc.language.isoengen_US
dc.publisherAmerican Chemical Societyen_US
dc.subjectHeterostructuresen_US
dc.subjectMobilityen_US
dc.subjectCarrier dynamicsen_US
dc.subjectScatteringen_US
dc.subjectTwo dimensional materialsen_US
dc.subjecthigh-mobility FETen_US
dc.subject1/f noiseen_US
dc.subjectremote interfacial phononen_US
dc.subjectedge-contacted FETen_US
dc.subjectheterostructure FETen_US
dc.subjecthBN−graphene−hBNen_US
dc.titleHigh-Performance and Ultralow-Noise Two-Dimensional Heterostructure Field-Effect Transistors with One-Dimensional Electrical Contactsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.rights.holder© American Chemical Society 2021. This is the authors accepted and refereed manuscript to the article.en_US
dc.source.pagenumber4126-4134en_US
dc.source.volume3en_US
dc.source.journalACS Applied Electronic Materialsen_US
dc.source.issue9en_US
dc.identifier.doi10.1021/acsaelm.1c00595
dc.identifier.cristin1932260
dc.relation.projectNorges forskningsråd: 250555en_US
dc.relation.projectNorges forskningsråd: 280788en_US
dc.relation.projectNORTEM: 197405en_US
dc.relation.projectNorges forskningsråd: 295864en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel